Skip to main content
ARS Home » Southeast Area » Raleigh, North Carolina » Food Science and Market Quality and Handling Research Unit » Research » Publications at this Location » Publication #384104

Research Project: Improved Vegetable Processing Methods to Reduce Environmental Impact, Enhance Product Quality and Reduce Food Waste

Location: Food Science and Market Quality and Handling Research Unit

Title: Vegetable fermentations brined with low salt for reclaiming food waste

item LITTLE, CONNOR - North Carolina State University
item CRUZ-MARTÍNEZ, VIVIANA - Pontifical Catholic University Of Puerto Rico-Ponce
item ST. FORT, DARTRICIA - North Carolina State University
item PAGÁN-MEDINA, CHRISTIAN - Former ARS Employee
item Page, Clinton
item PEREZ-PEREZ, YOBET - Former ARS Employee
item TAVEIRNE, MICHAEL - North Carolina State University
item LEE, ALICE - North Carolina State University
item ARROYO GONZÁLEZ, NANCY - Pontifical Catholic University Of Puerto Rico-Ponce
item SANTIAGO ORTIZ, CARILUZ - Pontifical Catholic University Of Puerto Rico-Ponce
item Perez Diaz, Ilenys

Submitted to: Journal of Food Science
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 1/24/2022
Publication Date: 5/1/2022
Citation: Little, C., Cruz-Martínez, V., St. Fort, D.P., Pagán-Medina, C., Page, C.A., Perez-Perez, Y., Taveirne, M., Lee, A., Arroyo González, N., Santiago Ortiz, C., Perez Diaz, I.M. 2022. Vegetable fermentations brined with low salt for reclaiming food waste. Journal of Food Science. 87(5):2121-2132.

Interpretive Summary: Vegetables are the second most wasted commodity in the United States of America and a substantial constituent of the global food waste stream. Development of fermentation systems to reclaim surplus vegetables from farms, grocery stores and farmer’s markets offers opportunities to ameliorate economic losses and environmental impact and add value to waste. The research described suggests that a fraction of vegetables could be fermented in cover brines while others, with high sugar content, need customized cover brines. However, it becomes evident that optimization of vegetable fermentations with stater cultures and added buffers represent an opportunity to stimulate complete bioconversions applicable in reclaiming surplus production volumes.

Technical Abstract: Fermentation of eight vegetables was studied as an alternative for reclamation of surplus volumes. Fermentation performance was predicted by comparing the amounts of acid that could be produced from the intrinsic sugar content with that buffered by the fresh vegetable matrices prior to reaching an inhibitory pH for fermentative microbes (3.30). Native fermentations were brined with 345.0 mM sodium chloride, 40.0 mM calcium chloride, 6.0 mM potassium sorbate, and vinegar to adjust the initial pH to 4.70. High-performance liquid chromatography analysis, pH, and carbon dioxide measurements and spiral plating on selective media were employed to monitor the progress of fermentations. The average colony counts for yeast and/or molds and Enterobacteriaceae declined to undetectable levels from 3.6 ± 1.5 log CFU/ml within 7 days of fermentation. The fermentation of sugars produced lactic, acetic, succinic, and/or malic acids, and ethanol. As predicted, the fermentation of vegetables with low sugar content, such as broccoli, green leaf lettuce, and green pea proceeded to completion. The fermentation of vegetables with a moderate sugar content, such as green bell pepper, red ripened tomato, and green bean were incomplete at pH 3.1 ± 0.2. The fermentation of high sugar vegetables including sweet potato and corn were expected and observed to be incomplete. It is concluded that the intrinsic sugar content and buffer capacity of surplus vegetables are relevant parameters in obtaining complete fermentations.