Skip to main content
ARS Home » Plains Area » Lubbock, Texas » Cropping Systems Research Laboratory » Wind Erosion and Water Conservation Research » Research » Publications at this Location » Publication #371279

Research Project: Optimizing Water Use Efficiency for Environmentally Sustainable Agricultural Production Systems in Semi-Arid Regions

Location: Wind Erosion and Water Conservation Research

Title: Potential dryland cotton yield increases from management of selected soil physical and chemical properties associated with soil health

item SRINIVASULU, ALE - Texas A&M University
item SUSHIL, HIMANSHU - Texas A&M University
item HUDSON, DARREN - Texas Tech University
item Mauget, Steven
item GOEBEL, TIM - Texas Tech University
item BAUMHARDT, LOUIS - US Department Of Agriculture (USDA)
item BORDOVSKY, JAMES - Texas A&M University
item BRAUER, DAVID - US Department Of Agriculture (USDA)
item Lascano, Robert
item Gitz, Dennis

Submitted to: ASABE Food Processing Automation Conference
Publication Type: Abstract Only
Publication Acceptance Date: 3/20/2020
Publication Date: 7/13/2020
Citation: Srinivasulu, A., Sushil, H.K., Hudson, D., Mauget, S.A., Goebel, T.S., Baumhardt, L.R., Bordovsky, J.P., Brauer, D.K., Lascano, R.J., Gitz, D.C. 2020. Potential dryland cotton yield increases from management of selected soil physical and chemical properties associated with soil health. ASABE Food Processing Automation Conference. Presentation. Omaha, NE, July 12-15, 2020.

Interpretive Summary:

Technical Abstract: The continuing decline of groundwater levels in the underlying Ogallala Aquifer, diminishing irrigation well capacities, and increasing energy and equipment costs associated with groundwater extraction for irrigation are driving a transition to dryland agriculture in the Texas High Plains (THP). Many dryland production strategies attempting to increase infiltration and conserve soil water have been proposed and studied. However, efforts to quantify the long-term impacts of altered soil physical and chemical properties, especially those associated with soil health, are lacking. The goal of this study was to assess the potential long-term dryland cotton (Gossypium hirsutum L.) production response to hypothetical changes in selected soil physical and chemical properties putatively associated with soil health. The CROPGRO-Cotton module within the cropping system model of the Decision Support System for Agrotechnology Transfer (DSSAT) was used to simulate the effects of such changes. Changes in soil physical and chemical properties considered were reduced surface runoff and increases in soil water holding capacity, soil organic carbon, albedo (e.g. through stubble mulching), and drainage (e.g. enhancing infiltration with no-tillage/cover crops).. Mean seed cotton yield simulated with baseline soil properties of a pullman clay loam soil at Halfway in the THP was compared to simulated seed cotton yield values obtained with the changes in soil properties using weather data from 1977 to 2019. Simulated mean seed cotton yield increased by: a) 7% when the soil water holding capacity was increased by an inch (25 mm), b) 24% when the runoff curve number was decreased from 80 to 60, c) 8% when soil organic carbon was increased by 1%,d) 12% when albedo fraction was increased from 0.2 to 0.4, and e) 53% when the drainage rate fraction was doubled from 0.2. The effect of pre-plant irrigation on dryland cotton production was also assessed and an application of pre-plant irrigation of 2 inches (51 mm) resulted in a 7% increase in seed cotton yield. Water balances under each of the above scenarios are being compared. These results and this modeling approach will be used to define the theoretical maximal yield increases, and later, to constraining and defining the economically feasible limits expected by managing soil physical and chemical properties associated with increased soil health.