Skip to main content
ARS Home » Plains Area » El Reno, Oklahoma » Oklahoma and Central Plains Agricultural Research Center » Livestock, Forage and Pasture Management Research Unit » Research » Publications at this Location » Publication #369022

Research Project: Integrated Agroecosystem Research to Enhance Forage and Food Production in the Southern Great Plains

Location: Livestock, Forage and Pasture Management Research Unit

Title: Remote sensing of evapotranspiration (ET)

Author
item Wagle, Pradeep
item Gowda, Prasanna

Submitted to: Remote Sensing
Publication Type: Book / Chapter
Publication Acceptance Date: 9/16/2019
Publication Date: 9/28/2019
Citation: Wagle, P., Gowda, P.H. 2019. Remote sensing of evapotranspiration (ET). Basel,Switzerland: MDPI. 252 p.

Interpretive Summary: Evapotranspiration (ET) is a critical component of the water and energy balances, and the number of remote sensing-based ET products and estimation methods has increased in recent years. Various aspects of remote sensing of ET are reported in 11 papers published in this special issue. The major research topics covered by this special issue include inter-comparison and performance evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model (ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET products; development or improvement of data fusion frameworks to provide continuous daily ET at a high spatial resolution (field-scale or 30 m) by fusing the advanced space-borne thermal emission reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS), and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of 36 land surface models and four diagnostic datasets. The effects of the differences among ET products on water resources and ecosystem management were also investigated. More accurate ET estimates and improved understanding of remotely sensed ET products can help maximize crop productivity while minimizing water loses and management costs.

Technical Abstract: Evapotranspiration (ET) is a critical component of the water and energy balances, and the number of remote sensing-based ET products and estimation methods has increased in recent years. Various aspects of remote sensing of ET are reported in 11 papers published in this special issue. The major research topics covered by this special issue include inter-comparison and performance evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model (ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET products; development or improvement of data fusion frameworks to provide continuous daily ET at a high spatial resolution (field-scale or 30 m) by fusing the advanced space-borne thermal emission reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS), and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of 36 land surface models and four diagnostic datasets. The effects of the differences among ET products on water resources and ecosystem management were also investigated. More accurate ET estimates and improved understanding of remotely sensed ET products can help maximize crop productivity while minimizing water loses and management costs.