Location: Cereal Crops Research
Title: Genetic mapping and prediction analysis of FHB resistance in a hard red spring wheat breeding populationAuthor
![]() |
LIU, YUAN - North Dakota State University |
![]() |
SALSMAN, EVAN - North Dakota State University |
![]() |
Fiedler, Jason |
![]() |
HEGSTAD, JUSTIN - North Dakota State University |
![]() |
GREEN, ANDREW - North Dakota State University |
![]() |
MERGOUM, MOHAMED - University Of Georgia |
![]() |
ZHONG, SHAOBIN - North Dakota State University |
![]() |
LI, XUEHUI - North Dakota State University |
Submitted to: Frontiers in Plant Science
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 7/18/2019 Publication Date: 8/6/2019 Citation: Liu, Y., Salsman, E., Fiedler, J.D., Hegstad, J., Green, A., Mergoum, M., Zhong, S., Li, X. 2019. Genetic mapping and prediction analysis of FHB resistance in a hard red spring wheat breeding population. Frontiers in Plant Science. 10:1007. https://doi.org/10.3389/fpls.2019.01007. DOI: https://doi.org/10.3389/fpls.2019.01007 Interpretive Summary: Fusarium head blight (FHB) is one of the most destructive diseases in wheat and barley worldwide. It attacks the heads during flowering, which decreases grain yield and quality. The pathogen also deposits toxins in the grain, which can lead to a complete crop loss under the right conditions. Breeding for genetic FHB resistance is hampered by its complex genetics, large environment effects, and high cost of disease screening. In this study we utilized hard red spring wheat breeding material to investigate the current potential for FHB resistance and developed modern molecular breeding tools to improve the future potential. We identified two novel genetic loci that conferred major disease resistance and developed a breeding tool to help combine all the other minor sources of resistance together. This information is crucial for the wheat breeders to select new wheat cultivars with FHB resistance and is currently being used with adapted lines in the northern Great Plains. Technical Abstract: Fusarium head blight (FHB) is one of the most destructive diseases in wheat worldwide. Breeding for FHB resistance is hampered by its complex genetic architecture, large genotype by environment interaction, and high cost of phenotype screening. Genomic selection (GS) is a powerful tool to enhance improvement of complex traits such as FHB resistance. The objectives of this study were to 1) investigate the genetic architecture of FHB resistance in a North Dakota State University (NDSU) hard red spring wheat breeding population, 2) test if the major QTL Fhb1 and Fhb5 play an important role in this breeding population; and 3) assess the potential of GS to enhance breeding efficiency of FHB resistance. A total of 439 elite spring wheat breeding lines were genotyped using genotyping-by-sequencing (GBS) and 102,147 SNP markers were obtained. Evaluation of FHB severity was conducted in 10 unbalanced field trials across multiple years and locations. Two QTL for FHB resistance were identified and located on chromosome arms 1AL and 6BL, explaining 5.3% and 4.8% of total phenotypic variation, respectively. The major type II resistance QTL Fhb1 only explained 2.3% of total phenotypic variation and the QTL Fhb5 was not significantly associated with FHB resistance in this breeding population. Our results suggest that integration of many genes with medium/minor effects in this breeding population should provide stable resistance. Genomic prediction accuracy of 0.42 for the FHB resistance was obtained in this study, indicating implementation of GS had great potential to enhance the improvement of FHB resistance. |