Author
LAMIT, L - Michigan Technological University | |
ROMANOWICZ, K - University Of Michigan | |
POTVIN, L - Forestry Sciences Laboratory | |
Rivers, Adam | |
SINGH, K - Joint Genome Institute | |
LENNON, J - Indiana University | |
TRINGE, S - Joint Genome Institute | |
KANE, E - Michigan Technological University | |
LILLESKOV, E - Michigan Technological University |
Submitted to: FEMS Microbiology Ecology
Publication Type: Peer Reviewed Journal Publication Acceptance Date: 5/1/2017 Publication Date: 6/30/2017 Publication URL: https://handle.nal.usda.gov/10113/5763096 Citation: Lamit, L.J., Romanowicz, K.J., Potvin, L.R., Rivers, A.R., Singh, K., Lennon, J.T., Tringe, S., Kane, E.S., Lilleskov, E.A. 2017. Patterns and drivers of fungal community depth stratification in Sphagnum peat. FEMS Microbiology Ecology. https://doi: 10.1093/femsec/fix082. DOI: https://doi.org/10.1093/femsec/fix082 Interpretive Summary: Much of the artic and subartic is covered with peat bogs which hold one third of the world’s organic carbon. A loss of water, through drought, climate change or draining could stimulate fungi to consume the organic carbon release large amounts of carbon dioxide, worsening global warming. This study identified what types of fungi increased when natural peat was drained. Technical Abstract: Peatlands store an immense pool of soil carbon vulnerable to microbial oxidation due to drought and intentional draining. We used amplicon sequencing and quantitative PCR to 1) examine how fungi are influenced by depth in the peat profile, water table (WT) and plant functional group (PFG) at the onset of a multi-year mesocosm experiment, and 2) test if fungi are correlated with abiotic variables of peat and pore water. We hypothesized that each factor influenced fungi, but that depth would have the strongest effect early in the experiment. We found that: 1) communities were strongly depth stratified; fungi were four-times more abundant in the upper (10-20 cm) than the lower (30-40 cm) depth, and dominance shifted from ericoid mycorrhizal fungi to saprotrophs and endophytes with increasing depth; 2) the influence of PFG was depth-dependent, with Ericaceae important in structuring the community in the upper peat only; 3) WT had minor influences; and 4) communities strongly covaried with abiotic variables, including indices of peat and pore water carbon quality. Our results highlight the importance of vertical stratification to peatland fungi, and the depth-dependency of PFG effects, which must be considered when elucidating the role of fungi in peatland carbon dynamics. |