Skip to main content
ARS Home » Research » Publications at this Location » Publication #328752

Title: Seasonal greenhouse gas and soil nutrient cycling in semi-arid native and non-native perennial grass pastures

Author
item PETERSON-MUNKS, BREKKE - Orise Fellow
item ARGOTI ARANGO, MIGUEL ANDRES - Colombian Agricultural Institute (ICA)
item RICE, CHARLES - Kansas State University
item Steiner, Jean

Submitted to: Grazinglands Research Laboratory Miscellaneous Publication
Publication Type: Proceedings
Publication Acceptance Date: 5/29/2016
Publication Date: 6/14/2016
Citation: Peterson-Munks, B.L., Argoti Arango, M., Rice, C., Steiner, J.L. 2016. Seasonal greenhouse gas and soil nutrient cycling in semi-arid native and non-native perennial grass pastures. Pp. 22-27. In: R.W. Todd and A. Campbell (Eds). Proceedings-Great Plains Grazing Field Research Symposium, 14 June 2016, Oklahoma State University, Stillwater, OK. Available: https://drive.google.com/file/d/0B5YS3Y9RTDyiQV9IUURWY2NNNW8/view?pref=2&pli=1.

Interpretive Summary: Abstract only.

Technical Abstract: Previous research indicates that photosynthetic metabolism of warm- and cool-season grass species affects greenhouse gas (GHG, (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O))) emissions from soil. This information could help establish best management practices to mitigate GHGs and store soil C and N. We hypothesized that the magnitude of labile soil carbon (C) and nitrogen (N) would increase with soil moisture followed by an increase in GHG emissions in cool-season pasture soils early in the growing season compared to warm-season pasture soils. A study at the USDA-ARS Grazinglands Research Laboratory, El Reno, OK was conducted in to: 1) determine seasonal soil C and N content and 2) obtain seasonal GHG emissions of soils under warm- and cool-season grasses. Bi-weekly sampling of GHG and soil (0-15cm) occurred in warm- and cool-season pastures in replicates of five. Greenhouse gas samples were analyzed for CO2, CH4 and N2O on a gas chromatograph. Soil water content (SWC), physical properties and labile C and N were determined using standard methods. Initial results indicate that the magnitude of CO2 and N2O were proportional to SWC, and CH4 assimilation decreased in semi-arid soils under native perennial grasses compared to soils under non-native grasses. Soils under non-native grasses had increased magnitudes of CO2 and N2O, while CH4 assimilation was similar to soil under native grasses during warmer seasonal trends were moisture was limited. The implication of this research indicates that GHG fluxes from soils in semi-arid environments are altered by abiotic drivers and assimilate CH4.