Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Characterization of shrubland-atmosphere interactions through use of eddy covariance method distributed footprint sampling, and imagery from unmanned aerial vehicles

item Anderson, Cody
item Vivoni, Enrique
item Pierini, Nicole
item Robles-morua, Agustin
item Rango, Albert - Al
item Laliberte, Andera
item Saripalli, Srikanth

Submitted to: American Geophysical Union
Publication Type: Abstract Only
Publication Acceptance Date: 9/28/2012
Publication Date: N/A
Citation: N/A

Interpretive Summary:

Technical Abstract: Ecohydrological dynamics can be evaluated from field observations of land-atmosphere states and fluxes, including water, carbon, and energy exchanges measured through the eddy covariance method. In heterogeneous landscapes, the representativeness of these measurements is not well understood due to the variable nature of the sampling footprint and the mixture of underlying herbaceous, shrub, and soil patches. In this study, we integrate new field techniques to understand how ecosystem surface states are related to turbulent fluxes in two different semiarid shrubland settings in the Jornada (New Mexico) and Santa Rita (Arizona) Experimental Ranges. The two sites are characteristic of Chihuahuan (NM) and Sonoran (AZ) Desert mixed-shrub communities resulting from woody plant encroachment into grassland areas. In each study site, we deployed continuous soil moisture and soil temperature profile observations at twenty sites around an eddy covariance tower after local footprint estimation revealed the optimal sensor network design. We then characterized the tower footprint through terrain and vegetation analyses derived at high resolution (<l m) from imagery obtained from a fixed-wing and rotary-wing Unmanned Aerial Vehicles (UAV). Our analysis focuses on the summertime land-atmosphere states and fluxes during which each ecosystem responded differentially to the North American monsoon. We found that vegetation heterogeneity induces spatial differences in soil moisture and temperature that are important to capture when relating these states to the eddy covariance flux measurements. Spatial distributions of surface states at different depths reveal intricate patterns linked to vegetation cover that vary between the two sites. Furthermore, single site measurements at the tower are insufficient to capture the footprint conditions and their influence on turbulent fluxes. We also discuss techniques for aggregating the surface states based upon the vegetation and soil classifications obtained from the high-resolution aerial imagery. Overall, the integration of the different techniques yielded new insight into the spatiotemporal variation of land surface states and their relation to sensible and latent heat fluxes in two shrubland sites, with the potential application in other ecosystems worldwide.

Last Modified: 10/19/2017
Footer Content Back to Top of Page