Skip to main content
ARS Home » Midwest Area » Peoria, Illinois » National Center for Agricultural Utilization Research » Renewable Product Technology Research » Research » Publications at this Location » Publication #261562

Title: Integrated Biorefineries with Engineered Microbes and High-value Co-products for Profitable Biofuels Production

Author
item GIBBONS, WILLIAM - South Dakota State University
item Hughes, Stephen

Submitted to: Book Chapter
Publication Type: Book / Chapter
Publication Acceptance Date: 12/15/2010
Publication Date: 1/10/2011
Citation: Gibbons, W., Hughes, S.R. 2011. Integrated biorefineries with engineered microbes and high-value co-products for profitable biofuels production. In: Tomes, D., Lakshmanan, P., Songstad, D., editors. Biofuels. New York Dordrecht Heidelberg London: Springer. p. 265-284.

Interpretive Summary:

Technical Abstract: Corn-based fuel ethanol production processes provide several advantages which could be synergistically applied to overcome limitations of biofuel processes based on lignocellulose. These include resources such as equipment, manpower, nutrients, water, and heat. The fact that several demonstration-scale biomass ethanol processes are using corn as a platform supports this viewpoint. This report summarizes the advantages of first-generation corn-based biofuel processes and then describes the technologies, advantages, and limitations of second-generation lignocellulose-based biofuel systems. This is followed by a discussion of the potential benefit of fully integrating first- and second-generation processes. We conclude with an overview of the technology improvements that are needed to enhance the profitability of biofuel production through development of an integrated biorefinery. A key requirement is creation of industrially robust, multifunctional ethanologens that are engineered for maximum ethanol production from mixed sugars. In addition to ethanol, combined biorefineries could also be the source of valuable co-products, such as chemicals and plastics. However, this will require expression systems that produce high-value co-products. Advantages of this approach are that (1) such strains could be used for bioconversion in any part of the combined biorefinery and (2) using one recombinant organism with many additions should simplify the process of obtaining necessary FDA approval for feed products produced by or containing recombinant organisms.