Skip to main content
ARS Home » Plains Area » Bushland, Texas » Conservation and Production Research Laboratory » Soil and Water Management Research » Research » Publications at this Location » Publication #257327

Title: Long-term conventional and no-tillage management, crop growth, and field hydrology

Author
item Baumhardt, Roland - Louis
item SCANLON, BRIDGET - University Of Texas
item Schwartz, Robert
item REEDY, ROBERT - University Of Texas

Submitted to: ASA-CSSA-SSSA Annual Meeting Abstracts
Publication Type: Abstract Only
Publication Acceptance Date: 5/31/2010
Publication Date: 10/31/2010
Citation: Baumhardt, R.L., Scanlon, B., Schwartz, R.C., Reedy, R. 2010. Long-term conventional and no-tillage management, crop growth, and field hydrology. ASA-CSSA-SSSA Annual Meeting Abstracts, October 31-November 4, 2010, Long Beach, California. Paper No. 123-12. 2010 CDROM.

Interpretive Summary:

Technical Abstract: In the U.S. Southern High Plains wheat (Triticum aestivum L.) and grain sorghum [Sorghum bicolor (L.) Moench] are grown using a three year wheat-sorghum-fallow (WSF) rotation. Crop yield levels have been stabilized with stubblemulch-tillage (SM) or increased with no-tillage (NT) because of increased conservation of precipitation as soil water for crop use. Our objectives were to quantify the effects of tillage methods on the field water balance and the growth and yield of wheat and sorghum during a long-term study. Beginning in 1984, all WSF rotation phases were established in large, > 2 ha, paired graded terrace plots with either SM or NT practices on a gently sloping Pullman silty clay loam (fine, mixed, superactive, thermic Torrertic Paleustoll) at the USDA-ARS, Conservation and Production Research Laboratory, Bushland, Texas. We measured crop growth and yield, precipitation, stormwater runoff, soil water at the beginning of each phase, and chloride (Cl) concentration from borehole cores taken to a depth of ~ 15 m. An overall 25 mm increase in fallow precipitation stored as soil water with NT increased mean sorghum grain yield approximately 10% compared with SM tillage. Wheat grain yields were unaffected. Crop growth factors including tiller number and leaf area likewise favored NT residue management plots. Data show that, compared with native rangeland, SM and NT increased the Cl displacement downward, but exceeded the estimated rooting depth only in NT plots. The calculated annual soil water drainage in NT plots averaged 11.5 mm or almost double the 6 mm/yr recharge rate estimated for the region. Compared with the more conventional SM tillage, implementation of NT residue management in dryland production systems has effectively increased the water availability for crop use and potential groundwater recharge.