Page Banner

United States Department of Agriculture

Agricultural Research Service

Title: Utilizing the trophic interactions of nematodes as indicators of changes in soil biota associated with loss of Bouteloua eriopoda grasslands

item Klass, Jeremy
item Trojan, Jacquiline
item Thomas, Stephen
item Peters, Debra - Deb

Submitted to: Ecological Society of America (ESA)
Publication Type: Abstract Only
Publication Acceptance Date: 5/1/2010
Publication Date: N/A
Citation: N/A

Interpretive Summary:

Technical Abstract: A theoretical framework of desertification has been developed within the Jornada Basin LTER that involves the rate of change and magnitude of wind and water erosion affected by spatial variation in the distribution of gap size changes from high connectivity of vegetated patches in grasslands to low connectivity of vegetated patches in shrublands. With increased connectivity, increased retention also occurs where soil biotic interactions should be working at a high degree. Accumulating evidence suggests that connectivity between many small bare soil patches and vegetated areas may occur via hyphal networks that dominate decomposition and N transformation processes through symbiotic associations with producers and soil biotic crusts in a “fungal loop”. This fungal loop may provide an unexplored source of connectivity at the patch scale between plant species in a single community. We hypothesize that encroachment of mesquite into black grama dominated grasslands has caused a disruption to the positive feedback loop between soil biotic crusts, DSF, and black grama (we collectively call this feedback-loop a soil biofeedback) where a loss of connectivity has occurred. Based upon the number of emerging studies identifying the importance of soil biota in semi-arid regions, this study utilized the highly specialized feeding behavior and physiology of nematode stylus/mouthparts as indicators of change. Specific nematode genera have been identified to feed/prey upon all three of the root, fungal and bacterial energy channels with plant roots belowground that have important ecosystem level effects. Utilizing the specificity in feeding behaviors, this study asserts that food web theory plays an integral role in regulating productivity, stability, and structure through the mechanisms of soil biofeedbacks by examining the associated changes in nematode community structure associated with the differing vegetation states of desertification.

Last Modified: 10/16/2017
Footer Content Back to Top of Page