Skip to main content
ARS Home » Research » Publications at this Location » Publication #250556

Title: Reduced O2 and elevated CO2 tolerance limits of fresh-cut ‘Kent’ mango during retail display

item Dea, Sharon
item BRECHT, JEFFREY - University Of Florida
item DE NASCIMENTO NUNES, CECILIA - University Of Florida
item Baldwin, Elizabeth - Liz

Submitted to: Southern Region of the American Society for Horticultural Science
Publication Type: Abstract Only
Publication Acceptance Date: 2/10/2010
Publication Date: N/A
Citation: N/A

Interpretive Summary:

Technical Abstract: Exposure to unfavorable temperatures encountered during retail display may induce the development of injurious atmospheres inside improperly designed packages of fresh-cut products, compromising their quality and safety. The objective of this study was to determine the optimal reduced O2 and/or elevated CO2 concentrations suitable for fresh-cut 'Kent' mango handling at an elevated temperature (15 ºC), as unfortunately is frequently encountered during retail display of fresh-cut products. Overall sensory quality, respiration rates (RR), firmness, composition, and aroma volatiles were measured. Atmospheres of 0 or 2.5 kPa O2 with no CO2 modification were found to partly inhibit the symptoms responsible for shelf life reduction (i.e. browning, water-soaking, off-flavor, and spoilage). However, a completely anaerobic atmosphere is not recommended since it may result in tissue damage during longer exposure periods. When reduced O2 atmosphere (2.5 kPa) was compared with reduced O2 plus elevated CO2 (10 or 20 kPa CO2) atmospheres and an air control, the 2.5 kPa O2 plus 10 kPa CO2 atmosphere was found to best maintain fresh-cut 'Kent' mango quality. In contrast, an atmosphere of 2.5 kPa O2 plus 20 kPa CO2 had no beneficial effect. Higher levels of fermentative aroma volatiles (i.e., acetaldehydes and ethanol) occurred in slices held in reduced O2 atmospheres compared with air, but no objectionable aroma was detected subjectively. The RR was not significantly affected during storage by the reduced O2 levels compared to holding in air. These results provide valid information that can be used as a starting point for the development of a modified atmosphere packaging system that will be capable of maintaining the overall quality of fresh-cut mango slices when exposed to elevated temperatures.