Skip to main content
ARS Home » Midwest Area » Lexington, Kentucky » Forage-animal Production Research » Research » Publications at this Location » Publication #250382

Title: Soil Organic Matter Fractions and Aggregate Distribution In Response to Tall Fescue Stands

Author
item HANDAYANI, I - Murray State University
item COYNE, M - University Of Kentucky
item TOKOSH, R - Murray State University

Submitted to: International Journal of Soil, Sediment, and Water
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 1/1/2010
Publication Date: 1/1/2010
Citation: Handayani, I.P., Coyne, M.S., Tokosh, R.S. 2010. Soil Organic Matter Fractions and Aggregate Distribution In Response to Tall Fescue Stands. International Journal of Soil, Sediment, and Water. 5:1-10.

Interpretive Summary: The study was conducted to evaluate the influences of tall fescue management on soil organic matter fractions and macro- and microaggregate distribution. Soil samples were collected from four paired adjacent fields consisting of five years of tall fescue mono and poly stands in Western Kentucky. Soil samples from 0 to 15 cm and 15 to 30 cm soil depths were analyzed for soil organic C and N, particulate organic matter C (POM-C) and N (POM-N), macro- and micro aggregate distribution and C-associated with macro- and micro- aggregates. Significant effects were observed between stands for all the properties, except total C, microaggregates and C-associated with microaggregates. Sampling depth significantly influenced total C and N in both stands. Particulate organic matter C and N and C-associated with macroaggregates and the amount of macroaggregates were strongly affected by tall fescue management. This confirmed the hypothesis that early changes in soil properties were reflected in labile C and N fractions and soil structure. Tall fescue mixture stands had 44% higher POM-C, 50% higher POM-N, 26% more macroaggregates and 33% more C-associated with macroaggregates compared to the tall fescue mono stands at the soil surface of 0 to 15 cm.

Technical Abstract: The study was conducted to evaluate the influences of tall fescue management on soil organic matter fractions and macro- and microaggregate distribution. Soil samples were collected from four paired adjacent fields consisting of five years of tall fescue mono and poly stands in Western Kentucky. Soil samples from 0 to 15 cm and 15 to 30 cm soil depths were analyzed for soil organic C and N, particulate organic matter C (POM-C) and N (POM-N), macro- and micro aggregate distribution and C-associated with macro- and micro- aggregates. Significant effects were observed between stands for all the properties, except total C, microaggregates and C-associated with microaggregates. Sampling depth significantly influenced total C and N in both stands. Particulate organic matter C and N and C-associated with macroaggregates and the amount of macroaggregates were strongly affected by tall fescue management. This confirmed the hypothesis that early changes in soil properties were reflected in labile C and N fractions and soil structure. Tall fescue mixture stands had 44% higher POM-C, 50% higher POM-N, 26% more macroaggregates and 33% more C-associated with macroaggregates compared to the tall fescue mono stands at the soil surface of 0 to 15 cm.