Skip to main content
ARS Home » Research » Publications at this Location » Publication #243943

Title: PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis.

item AHUJA, EKTA - Max Planck Society
item JANNING, PETRA - Max Planck Society
item MENTEL, MATTHIAS - Technical University Of Darmstadt
item GRAEBSCH, ALMUT - University Of Leipzig
item BREINBAUER, ROLF - University Of Leipzig
item HILLER, WOLF - University Of Leipzig
item COSTISELLA, BURKHARD - University Of Leipzig
item Thomashow, Linda
item MAVRODI, DMITRI - Washington State University
item BLANKENFELDT, WULF - Max Planck Society

Submitted to: Journal of the American Chemical Society
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 9/1/2008
Publication Date: 12/17/2008
Citation: Thomashow, L.S. 2008. PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. Journal of the American Chemical Society, 130 (50): 17053-17061.

Interpretive Summary: Phenazine compounds produced by certain species of bacteria have antibiotic activity against a wide range of bacterial and fungal pathogens including many that cause important root diseases of plants. The antibiotic activity of these compounds has long been known but the mechanism of synthesis is poorly understood, making it difficult to fully exploit their biological potential. This paper reports the structure and biological activities of PhzA and PhzB, two key enzymes in the phenazine biosynthesis pathway, and describes the mechanism by which they act to synthesize the core skeleton of the phenazine molecule. These analyses provide novel insight not only into phenazine synthesis, but also into the activity of several other genes identified through recent genomic sequencing efforts.

Technical Abstract: Phenazines are redox-active bacterial secondary metabolites that participate in important biological processes such as the generation of toxic reactive oxygen species and the reduction of environmental iron. Their biosynthesis from chorismic acid depends on enzymes encoded by the phz operon, but many details of the pathway remain unclear. It previously was shown that phenazine biosynthesis involves the symmetrical head-to-tail double condensation of two identical amino-cyclohexenone molecules to a tricyclic phenazine precursor. While this key step can proceed spontaneously in vitro, we show here that it is catalyzed by PhzA/B, a small dimeric protein of the Delta(5)-3-ketosteroid isomerase/nuclear transport factor 2 family, and we reason that this catalysis is required in vivo. Crystal structures in complex with analogues of the substrate and product suggest that PhzA/B accelerates double imine formation by orienting two substrate molecules and by neutralizing the negative charge of tetrahedral intermediates through protonation. HPLC-coupled NMR reveals that the condensation product rearranges further, which is probably important to prevent back-hydrolysis, and may also be catalyzed within the active site of PhzA/B. The rearranged tricyclic product subsequently undergoes oxidative decarboxylation in a metal-independent reaction involving molecular oxygen. This conversion does not seem to require enzymatic catalysis, explaining why phenazine-1-carboxylic acid is a major product even in strains that use phenazine-1,6-dicarboxylic acid as a precursor of strain-specific phenazine derivatives.