Skip to main content
ARS Home » Pacific West Area » Logan, Utah » Forage and Range Research » Research » Publications at this Location » Publication #202467

Title: Long-Term Dynamics of Production, Respiration, and Net CO2 Exchange in Two Sagebrush-Steppe Ecosystems

Author
item GILMANOV, TAGIR - SOUTH DAKOTA STATE UNIV
item Svejcar, Anthony
item Johnson, Douglas
item Angell, Raymond
item SALIENDRA, NICANOR - USDA-FS, WISCONSIN
item WYLIE, BRUCE - USGS-EROS, SOUTH DAKOTA

Submitted to: Rangeland Ecology and Management
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: 7/24/2006
Publication Date: 11/1/2006
Citation: Gilmanov, T.G., Svejcar, A.J., Johnson, D.A., Angell, R.F., Saliendra, N.Z., Wylie, B.K. 2006. Long-Term Dynamics of Production, Respiration, and Net CO2 Exchange in Two Sagebrush-Steppe Ecosystems. Rangeland Ecology and Management.59:585-599.

Interpretive Summary: This study summarizes long-term measurements of carbon dioxide (CO2) exchange at two sites located in sagebrush-steppe ecosystems of the Intermountain West (Burns, OR and Dubois, ID). The measurements were part of the AgriFlux Network of the USDA Agricultural Research Service. Measurements of net ecosystem CO2 exchange during the growing season were continuously recorded at instrument towers. Data were partitioned into gross primary productivity and ecosystem respiration. Wintertime measurements were measured during 1999/2000 and 2000/2001 and used to predict CO2 exchange for other winters. Maximum gross primary productivity and ecosystem respiration were highest at Burns (20 g CO2 m-2 d-1) in 1998 and at Dubois in 1997 (about 36 g CO2 m-2 d-1). Mean annual gross primary production at Burns was 1,111 g CO2 m-2 yr-1 or about 30% lower than that at Dubois (1,602 g CO2 m-2 yr-1). Across the years of measurement, both sagebrush-steppe ecosystems took up more atmospheric CO2 than they lost (82 g CO2 m-2 yr-1 at Burns and 253 g CO2 m-2 yr-1 at Dubois). However, any particular year could either take up or lose carbon depending on the exact timing and amount of precipitation.

Technical Abstract: We present a synthesis of long-term measurements of CO2 exchange in two US Intermountain West sagebrush-steppe ecosystems. The locations near Burns, Oregon (1995-2001) and Dubois, Idaho (1996-2001) are part of the AgriFlux Network of the Agricultural Research Service, United States Department of Agriculture. Measurements of net ecosystem CO2 exchange (Fc) during the growing season were continuously recorded at flux towers using the Bowen ratio-energy balance technique. Data were partitioned into gross primary productivity (Pg) and ecosystem respiration (Re) using the light-response function method. Wintertime fluxes were measured during 1999/2000 and 2000/2001 and used to model fluxes in other winters. Comparison of daytime respiration derived from light-response analysis with nighttime tower measurements showed close correlation, with daytime respiration being on the average higher than nighttime respiration. Maxima of Pg and Re at Burns were both 20 g CO2 m-2 d-1 in 1998. Maxima of Pg and Re at Dubois were 37 and 35 g CO2 m-2 d-1, respectively, in 1997. Mean annual gross primary production at Burns was 1111 (range 475-1715) g CO2 m-2 yr-1 or about 30% lower than that at Dubois (1602, range 963-2162 g CO2 m-2 yr-1). Across the years, both ecosystems were net sinks for atmospheric CO2 with a mean net ecosystem CO2 exchange of 82 g CO2 m-2 yr-1 at Burns and 253 g CO2 m-2 yr-1 at Dubois, but on a yearly basis either site could be a C sink or source, mostly depending on precipitation timing and amount. Total amount precipitation is not a good predictor of carbon sequestration across sites. Our sites suggest that Fc should be partitioned into Pg and Re components to allow prediction of seasonal and yearly dynamics of CO2 fluxes.