Skip to main content
ARS Home » Northeast Area » Ithaca, New York » Robert W. Holley Center for Agriculture & Health » Plant, Soil and Nutrition Research » Research » Publications at this Location » Publication #304369

Title: The role of aluminum sensing and signaling in plant aluminum resistance

Author
item Liu, Jiping
item Pineros, Miguel
item Kochian, Leon

Submitted to: Journal of Integrative Plant Biology
Publication Type: Review Article
Publication Acceptance Date: 1/8/2014
Publication Date: 3/2/2014
Citation: Liu, J., Pineros, M., Kochian, L.V. 2014. The role of aluminum sensing and signaling in plant aluminum resistance. Journal of Integrative Plant Biology. 56(3):221-230. DOI: 10.1111/jipb.12162

Interpretive Summary:

Technical Abstract: As researchers have gained a better understanding in recent years into the physiological, molecular and genetic basis of how plants deal with aluminum (Al) toxicity in acid soils prevalent in the tropics and sub-tropics, it has become clear that an important component of these responses is the triggering and regulation of cellular pathways and processes by Al. In this review of plant Al signaling, we begin by summarizing the understanding of physiological mechanisms of Al resistance, which first led researchers to realize that Al stress induces gene expression and modifies protein function during the activation of Al resistance responses. Subsequently, an overview of Al resistance genes and their function provides verification that Al induction of gene expression plays a major role in Al resistance in many plant species. More recent research into the mechanistic basis for Al-induced transcriptional activation of resistance genes has led to the identification of several transcription factors as well as cis-elements in the promoters of Al resistance genes that play a role in greater Al-induced gene expression as well as higher constitutive expression of resistance genes in some plant species. Finally, the post transcriptional and translational regulation of Al resistance proteins is addressed, where recent research has shown that Al can both directly bind to and alter activity of certain organic acid transporters, and also influence Al resistance proteins indirectly, via protein phosphorylation.