Skip to main content
ARS Home » Plains Area » Fargo, North Dakota » Edward T. Schafer Agricultural Research Center » Sugarbeet and Potato Research » Research » Research Project #435001

Research Project: Pulse Crop Health Initiative

Location: Sugarbeet and Potato Research

Project Number: 3060-21650-001-000-D
Project Type: In-House Appropriated

Start Date: Jun 15, 2018
End Date: Jun 14, 2023

Objective:
Coordinate the implementation of the pulse health initiative for expanded pulse crops research in the areas of health and nutrition, functionality, sustainability, and global food security. Research should be coordinated with interested ARS, state, and industry cooperators, and administered through non-assisted cooperative agreements. Planning workshops and annual meetings involving interested parties will be organized throughout the funding period.

Approach:
Research will be conducted cooperatively to address the following research areas: Human Health and Chronic Disease Prevention; Functionality Traits and Food Security; and Sustainability of Pulse Production Systems. Targeted projects will focus on dry bean, dry pea, chickpea, or lentil research (or a combination of pulse crops) in the following priority areas: (1) Determine the role of pulse food consumption in a healthy diet with an emphasis on the biological mechanisms and impact on key health endpoints (e.g., glycemic control, cardiovascular risk factors, obesity/overweight, metabolic syndrome, inflammation, or microbiome composition); (2) Conduct well-designed and adequately controlled studies in humans that provide definitive data regarding the nutritional/health benefits of pulses as a component of a healthy diet; (3) Determine dietary consumption patterns of pulse foods and pulse food ingredients among U.S. consumers and the barriers and facilitators to pulse consumption; (4) Determine the role of dietary fiber, oligosaccharides, and other plant prebiotics from pulse crops in altering the composition and promoting beneficial attributes of a healthy gut microbiome; (5) Identify biomarkers of intake for various pulses; (6) Determine whether/how processing changes the health benefits or energy value of pulse foods consumed as part of a healthy diet; (7) Optimize processing conditions and formulations to improve the acceptability, flavor, nutritional value, or health attributes of foods made with pulses; (8) Develop high-throughput functionality measures that can be used by breeders and industry to assess functional characteristics of novel germplasm or current varieties; (9) Evaluate functional properties of protein and other pulse fractions/ingredients and optimize their use in food applications; (10) Determine the variability in chemical/nutritional composition of pulse crops and determine factors (agronomic, genetic or environmental) that influence that variation; (11) Determine factors (genetic or environmental) affecting the functional properties of pulse foods as ingredients in different food applications; (12) Develop pulse varieties with improved nutritional or functional attributes, combined with enhanced agronomic traits, and disease and pest resistance; (13) Assess the water footprint and demonstrate the value of improved water use efficiency in pulse-small grain cropping systems (e.g., field studies; life-cycle analyses); (14) Assess the carbon footprint and demonstrate the value of pulse cropping systems on the reduction of greenhouse gas emissions; (15) Develop improved pulse varieties that fix more nitrogen and identify enhanced plant-rhizobia interactions that yield superior nitrogen fixing capacity and leave greater residual nitrogen in soil; (16) Develop agronomic strategies to improve soil health through the incorporation of pulses in a cropping system rotation; (17) Assess the impact of incorporating pulses and expanding their use in the U.S. diet on sustainability outcomes.