Skip to main content
ARS Home » Midwest Area » Ames, Iowa » Corn Insects and Crop Genetics Research » Research » Research Project #434493

Research Project: Genetic and Genomic Characterization of Soybean and Other Legumes

Location: Corn Insects and Crop Genetics Research

Project Number: 5030-21220-006-000-D
Project Type: In-House Appropriated

Start Date: Apr 9, 2018
End Date: Apr 8, 2023

Objective:
Objective 1: Identify and characterize genes, markers, and molecular networks contributing to yield, resistance to pathogens, and nutrient stress tolerance in soybean and other legumes, and work with researchers to use the information in crop improvement by conventional breeding and gene editing technology. Sub-objective 1.A. Identify and characterize legume gene expression and epigenetic networks that control nutrient homeostasis, generating information for improving resistance or tolerance to abiotic stress. Sub-objective 1.B. Identify and characterize soybean disease resistance loci and defense gene expression and epigenetic networks, generating information for improving resistance or tolerance to pathogens that cause economic loss in soybeans.

Approach:
The United States leads world soybean production, contributing over 40 billion dollars to the economy in 2014. However, nutrient, disease and pest stresses limit agricultural production. The overarching goal of this project is to provide data and resources that will increase soybean (Glycine max (L.) Merrill) production by mitigating losses due to abiotic and biotic stresses. To study nutrient deficiency we will use iron deficiency chlorosis as a model. To study disease resistance responses we will use a variety of pathogens including Phakopsora pachyrhizi (Asian soybean rust), Phialophora gregata (brown stem rot), Phytophthora sojae (Phytophthora rot), and the insect pest Aphisglycines (soybean aphid). Regulation of abiotic and biotic stress responses requires constant signaling, likely controlled by gene expression and epigenetic changes. Further, a single stress exposure likely primes subsequent plant stress responses. To characterize the genes and networks involved in these responses we will couple RNA-seq, Methyl-seq and Virus Induced Gene Silencing. Finally, we will use RNA-seq data to characterize resistance loci and downstream defense responses. Successful completion of this project will result in genes, gene networks and validated markers that can be used to breed soybean germplasm with durable resistance to abiotic and biotic stress. This project will provide valuable resources to public and private soybean breeders, scientists and growers.