Skip to main content
ARS Home » Midwest Area » Peoria, Illinois » National Center for Agricultural Utilization Research » Bio-oils Research » Research » Research Project #436974

Research Project: New High-Value Biobased Materials with Applications Across Industry

Location: Bio-oils Research

2022 Annual Report


Accomplishments
1. Developed new 3-dimensional printing technology for composite materials. The synthesis of materials that are made from natural products, yet are as useful as conventional materials, is an elusive goal. The starting point toward this goal requires finding natural materials that have characteristics that allow them to be converted into durable goods. A promising candidate for this is vegetable oil. Another candidate is cellulose, the structural part of the cell walls of green plants. Considerable work has been done using each of these, but the results often fall short of the strength and other properties needed. In this research, the two commodities were combined into something that is a stronger and more functional polymer than could be made from either commodity alone. In order to get the reinforcing material where it needs to be, ARS researchers in Peoria, Illinois, developed a new 3-dimensional printing technology. The cellulose component is the core of the new product, which is then coated with a modified vegetable oil, layer by layer. The new composite is then cured with ultraviolet light to form the versatile material. The product, cellulose reinforced-soybean oil polymer, has stronger mechanical properties and performs better in thermal tests, compared to samples made from either material alone. For example, a strength test showed that the material was 37% stronger when a small amount of cellulose filler was added, and it can be twice as strong if even more filler is used. This is approaching the strength of common plastics, such as polypropylene, and with this improved strength, these polymers could be used to build household goods such as furniture. These materials are of great environmental interest not only because they consist of high amounts of agricultural resources, but also because they are mechanically strong.

2. New biodiesel catalysts and feedstocks were investigated. Biodiesel, a renewable, environmentally friendly alternative to conventional petroleum diesel fuel, is produced from vegetable oils and animal fats by a process called transesterification. However, conventional transesterification requires high quality oils to be successful. In addition, the most common catalysts are not recyclable and generate large quantities of wastewater during their removal from the biodiesel product. Thus, ARS researchers in Peoria, Illinois, in collaboration with external partners, converted lower-quality feedstocks, such as tallow, Jatropha oil, and others, to biodiesel using new catalyst technologies. The recoverable and recyclable catalysts included one made from calcium and iron oxides, and another that was from a common bacteria found in soil. In addition, their use also reduced the amount of wastewater generated during the process compared to older methods. With this new technology, a variety of low-quality oils were processed, and the fuel property results compared favorably to the fuels from more expensive sources, such as a green algal oil. The improved economic competitiveness of biodiesel with petroleum diesel may result in new possibilities for fuel from agricultural resources. These benefits, such as enhancing vegetable oil supply, reducing wastewater generation, and lowering catalyst costs, will help facilitate the societal transition away from petroleum to mitigate the impact of climate change.


Review Publications
Ibrahim, N.A., Rashid, U., Hazmi, B., Moser, B.R., Alharthi, F.A., Lalthazuala Rokhum, S., Ngamcharussrivichai, C. 2022. Biodiesel production from waste cooking oil using magnetic bifunctional calcium and iron oxide nanocatalysts derived from empty fruit bunch. Fuel. 317. Article 123525. https://doi.org/10.1016/j.fuel.2022.123525.
Fadzilah Abdullah, R., Rashid, U., Lokman Ibrahim, M., NolHakim, M.A.H.L., Moser, B.R., Alharthi, F.A. 2021. Bifunctional biomass-based catalyst for biodiesel production via hydrothermal carbonization (HTC) pretreatment – Synthesis, characterization, and optimization. Process Safety and Environmental Protection. 156:219-230. https://doi.org/10.1016/j.psep.2021.10.007.
Mushtaq, A., Asif Hanif, M., Zahid, M., Rashid, U., Mushtaq, Z., Zubair, M., Moser, B.R., Alharthi, F.A. 2021. Production and evaluation of fractionated Tamarind seed oil methyl esters as a new source of biodiesel. Energies. 14(21). Article 7148. https://doi.org/10.3390/en14217148.
Saeed, A., Asif Hanif, M., Hanif, A., Rashid, U., Iqbal, J., Irfan Majeed, M., Moser, B.R., Alsalme, A. 2021. Production of biodiesel from Spirogyra elongata, a common freshwater green algae with high oil content. Sustainability. 13(22). Article 12737. https://doi.org/10.3390/su132212737.
Hanif, M., Bhatti, H.N., Asif Hanif, M., Rashid, U., Hanif, A., Moser, B.R., Alsalme, A. 2021. A novel heterogeneous superoxide support-coated catalyst for production of biodiesel from roasted and unroasted Sinapis arvensis seed oil. Catalysts. 11(12). Article 1421. https://doi.org/10.3390/catal11121421.
Khan, K., Ul-Haq, N., Ur Rahman, W., Ali, M., Rashid, U., Ul-Haq, A., Jamil, F., Ahmed, A., Ahmed, F., Moser, B.R., Alsalme, A. 2021. Comprehensive comparison of hetero-homogeneous catalysts for fatty acid methyl ester production from non-edible Jatropha curcas oil. Catalysts. 11(12). Article 1420. https://doi.org/10.3390/catal11121420.
Shabbir, A., Mukhtar, H., Waseem Mumtaz, M., Rashid, U., Abbas, G., Moser, B.R., Alsalme, A., Touqeer, T., Ngamcharussrivichai, C. 2022. Lewatit-immobilized lipase from Bacillus pumilus as a new catalyst for biodiesel production from tallow: Response surface optimization, fuel properties and exhaust emissions. Process Safety and Environmental Protection. 160:286-296. https://doi.org/10.1016/j.psep.2022.02.032.
Doll, K.M., Moser, B.R., Knothe, G. 2021. Decarboxylation of oleic acid using iridium catalysis to form products of increased aromatic content compared to ruthenium systems. International Journal of Sustainable Engineering. 14(6):2018-2024. https://doi.org/10.1080/19397038.2021.1978589.
Liu, Z., Knetzer, D.A., Wang, J., Chu, F., Lu, C., Calvert, P.D. 2021. 3D printing acrylated epoxidized soybean oil reinforced with functionalized cellulose by UV curing. Journal of Applied Polymer Science. 139(4):e51561. https://doi.org/10.1002/app.51561.
Liu, Z., Vermillion, K., Jin, C., Wang, X., Zhao, W. 2021. NMR study on the oxidation of vegetable oils for assessing the antioxidant function of trehalose. Biocatalysis and Agricultural Biotechnology. 36. Article 102134. https://doi.org/10.1016/j.bcab.2021.102134.
Perveen, S., Hanif, M.A., Nadeem, R., Rashid, U., Azeem, M.W., Zubair, M., Nisar, N., Alharthi, F.A., Moser, B.R. 2021. A novel route of mixed catalysis for production of fatty acid methyl esters from potential seed oil sources. Catalysts. 11(7). Article 811. https://doi.org/10.3390/catal11070811.
Liu, Y., Zhou, X., Jin, C., Liu, G., Liu, Z., Kong, Z. 2022. Efficient and rapid removal of typical phenolic compounds from water with biobased porous organic polymers. Industrial Crops and Products. 184. Article 114971. https://doi.org/10.1016/j.indcrop.2022.114971.
Li, Q., Zhang, Y., Liu, Z., Liu, S., Huang, F., Zheng, M. 2022. Novel bacterial cellulose-TiO2 stabilized pickering emulsion for photocatalytic degradation. Cellulose. 29:5223-5234. https://doi.org/10.1007/s10570-022-04604-8.
Zhang, J., Huang, J., Zhu, G., Yu, X., Cheng, J., Liu, Z., Hu, Y., Shang, Q., Liu, C., Hu, L., Zhou, Y. 2021. Self-healing, recyclable, and removable UV-curable coatings derived from tung oil and malic acid. Green Chemistry. 23(16):5875-5886. https://doi.org/10.1039/d1gc01726h.
Doll, K.M., Cermak, S.C. 2022. Selective electrochemical oxidation of alcohols catalyzed by partially biobased TEMPO analogs. ChemistrySelect. 7(29). Article e202201736. https://doi.org/10.1002/slct.202201736.
Li, W., Xiao, L., Wang, Y., Huang, J., Liu, Z., Chen, J., Nie, X. 2022. Thermal-induced self-healing bio-based vitrimers: Shape memory, recyclability, degradation, and intrinsic flame retardancy. Polymer Degradation and Stability. 202. Article 110039. https://doi.org/10.1016/j.polymdegradstab.2022.110039.
Hazmi, B., Rashid, U., Kawi, S., Mokhtar, W.N.A.W., Yaw, T.C.S., Moser, B.R., Alsalme, A. 2022. Palm fatty acid distillate esterification using synthesized heterogeneous sulfonated carbon catalyst from plastic waste: Characterization, catalytic efficacy and stability, and fuel properties. Process Safety and Environmental Protection. 162:1139-1151. https://doi.org/10.1016/j.psep.2022.05.001.
Xiao, L., Li, W., Liu, Z., Zhang, K., Li, S., Wang, Y., Chen, J., Huang, J., Nie, X. 2022. Tung oil-derived epoxy vitrimers with high mechanical strength, toughness, and excellent recyclability. ACS Sustainable Chemistry & Engineering. 10(30):9829-9840.
Ro, K.S., Jackson, M.A., Szogi, A.A., Compton, D.L., Moser, B.R., Berge, N.D. 2022. Sub- and near-critical hydrothermal carbonization of animal manures. Sustainability. 14(9). Article 5052. https://doi.org/10.3390/su14095052.