Skip to main content
ARS Home » Plains Area » College Station, Texas » Southern Plains Agricultural Research Center » Crop Germplasm Research » Research » Research Project #434259

Research Project: Management and Utilization of Cotton Genetic Resources and Associated Information

Location: Crop Germplasm Research

Publications (Clicking on the reprint icon Reprint Icon will take you to the publication reprint.)

Genome-wide association study for tolerance to drought and salt tolerance and resistance to thrips at the seedling growth stage in US Upland cotton Reprint Icon - (Peer Reviewed Journal)
Abdelraheem, A., Kuraparthy, V., Hinze, L.L., Stelly, D., Wedegaertner, T., Zhang, J. 2021. Genome-wide association study for tolerance to drought and salt tolerance and resistance to thrips at the seedling growth stage in US Upland cotton. Industrial Crops and Products. 169. Article 113645. https://doi.org/10.1016/j.indcrop.2021.113645.

Insight into abscisic acid perception and signaling to increase plant tolerance to abiotic stress Reprint Icon - (Peer Reviewed Journal)
Rehman, A., Azhar, M., Hinze, L.L., Qayyum, A., Li, H., Peng, Z., Qin, G., Jia, Y., Pan, Z., He, S., Du, X. 2021. Insight into abscisic acid perception and signaling to increase plant tolerance to abiotic stress. Journal of Plant Interactions. 16(1):222-237. https://doi.org/10.1080/17429145.2021.1925759.

Reforming cotton genes: From elucidation of DNA structure to genome editing - (Peer Reviewed Journal)

Evaluation and genome-wide association study of resistance to bacterial blight race 18 in US Upland cotton germplasm Reprint Icon - (Peer Reviewed Journal)
Elassbli, H., Abdelraheem, A., Zhu, Y., Teng, Z., Wheeler, T., Kuraparthy, V., Hinze, L.L., Stelly, D., Wedegaertner, T., Zhang, J. 2021. Evaluation and genome-wide association study of resistance to bacterial blight race 18 in US Upland cotton germplasm. Molecular Genetics and Genomics. 296:719-729. https://doi.org/10.1007/s00438-021-01779-w.

Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions Reprint Icon - (Peer Reviewed Journal)
Qamer, Z., Chaudhary, M., Du, X., Hinze, L.L., Azhar, M. 2021. Review of oxidative stress and antioxidative defense mechanisms in Gossypium hirsutum L. in response to extreme abiotic conditions. Journal of Cotton Research. 4. Article 9. https://doi.org/10.1186/s42397-021-00086-4.

Parallel and intertwining threads of domestication in allopolyploid cotton Reprint Icon - (Peer Reviewed Journal)
Yuan, D., Grover, C.E., Hu, G., Pan, M., Miller, E., Conover, J.L., Hunt, S., Udall, J.A., Wendel, J.F. 2021. Parallel and intertwining threads of domestication in allopolyploid cotton. Advanced Science. Article 2003634. https://doi.org/10.1002/advs.202003634.

Networks of physiological adjustments and defenses, and their synergy with sodium (Na+) homeostasis explain the hidden variation for salinity tolerance across the cultivated Gossypium hirsutum germplasm Reprint Icon - (Peer Reviewed Journal)
Cushman, K., Pabuayon, I., Hinze, L.L., Sweeney, M., De Los Reyes, B. 2020. Networks of physiological adjustments and defenses, and their synergy with sodium (Na+) homeostasis explain the hidden variation for salinity tolerance across the cultivated Gossypium hirsutum germplasm. Frontiers in Plant Science. 11. Article 588854. https://doi.org/10.3389/fpls.2020.588854.

Status of the National Cotton Germplasm Collection - (Abstract Only)

Genome-wide identification and characterization of HSP70 gene family in four species of cotton Reprint Icon - (Peer Reviewed Journal)
Rehman, A., Atif, R., Qayyum, A., Du, X., Hinze, L.L., Azhar, M. 2020. Genome-wide identification and characterization of HSP70 gene family in four species of cotton. Genomics. 112(6):4442-4453. https://doi.org/10.1016/j.ygeno.2020.07.039.

Assessing genetic variation for Fusarium wilt race 4 resistance in tetraploid cotton by screening over three thousand germplasm lines under greenhouse or controlled conditions Reprint Icon - (Peer Reviewed Journal)
Zhang, J., Abdelraheem, A., Zhu, Y., Wheeler, T.A., Dever, J., Frelichowski, J.E., Love, J., Ulloa, M., Jenkins, J.N., McCarty Jr, J.C., Nichols, R., Wedegaertner, T. 2020. Assessing genetic variation for Fusarium wilt race 4 resistance in tetraploid cotton by screening over three thousand germplasm lines under greenhouse or controlled conditions. Euphytica. 216:108. https://doi.org/10.1007/s10681-020-02646-2.

Genetic analysis of the transition from wild to domesticated cotton (G. hirsutum L.) Reprint Icon - (Peer Reviewed Journal)
Grover, C.E., Yoo, M., Lin, M., Murphy, M.D., Harker, D.B., Byers, R.L., Lipka, A.E., Hu, G., Yuan, D., Conover, J., Udall, J.A., Paterson, A.H., Gore, M.A., Wendel, J. 2020. Genetic analysis of the transition from wild to domesticated cotton (G. hirsutum L.). G3, Genes/Genomes/Genetics. 10(2):731-754. https://doi.org/10.1534/g3.119.400909.

A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton Reprint Icon - (Peer Reviewed Journal)
Abdelraheem, A., Elassbli, H., Zhu, Y., Kuraparthy, V., Hinze, L.L., Stelly, D., Wedegaertner, T., Zhang, J. 2019. A genome-wide association study uncovers consistent quantitative trait loci for resistance to Verticillium wilt and Fusarium wilt race 4 in the US Upland cotton. Theoretical and Applied Genetics. 133:563-577. https://doi.org/10.1007/s00122-019-03487-x.

The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop Reprint Icon - (Peer Reviewed Journal)
Munir Iqbal, M., Huynh, M., Udall, J.A., Kilian, A., Adhikari, K.N., Berger, J.D., Erskine, W., Nelson, M.N. 2019. The first genetic map for yellow lupin enables genetic dissection of adaptation traits in an orphan grain legume crop. BioMed Central (BMC) Genetics. 20:68. https://doi.org/10.1186/s12863-019-0767-3.

Role of SNPs in determining QTLs for major traits in cotton Reprint Icon - (Peer Reviewed Journal)
Majeed, S., Rana, I., Atif, R., Ali, Z., Hinze, L.L., Azhar, M. 2019. Role of SNPs in determining QTLs for major traits in cotton. Journal of Cotton Research. 2:5. https://doi.org/10.1186/s42397-019-0022-5.

Insights into the evolution of the New World diploid cottons (Gossypium, subgenus Houzingenia) based on genome sequencing Reprint Icon - (Peer Reviewed Journal)
Grover, C.E., Arick, M.A., Thrash, A., Conover, J.L., Sanders, W.S., Peterson, D.G., Frelichowski, J.E., Scheffler, J.A., Scheffler, B.E., Wendel, J.F. 2018. Insights into the evolution of the New World diploid cottons (Gossypium, subgenus Houzingenia) based on genome sequencing. Genome Biology and Evolution. 11(1):53-71. https://doi.org/10.1093/gbe/evy256.

Survey of cotton (Gossypium sp.) for non-polar, extractable hydrocarbons for use as petrochemicals and liquid fuels - (Peer Reviewed Journal)
Adams, R., Frelichowski, J.E., Hinze, L.L., Ulloa, M. 2018. Survey of cotton (Gossypium sp.) for non-polar, extractable hydrocarbons for use as petrochemicals and liquid fuels. Phytologia. 100(1):37-44.