Skip to main content
ARS Home » Southeast Area » Athens, Georgia » U.S. National Poultry Research Center » Bacterial Epidemiology & Antimicrobial Resistance Research » Research » Research Project #430181

Research Project: Control Strategies and Evaluation of the Microbial Ecology Associated with Foodborne Pathogens and Poultry Processing

Location: Bacterial Epidemiology & Antimicrobial Resistance Research

Project Number: 6040-41420-005-000-D
Project Type: In-House Appropriated

Start Date: Mar 30, 2016
End Date: Jul 5, 2018

Objective:
Objective 1: Develop, evaluate and optimize processing treatments to reduce, control and potentially eliminate foodborne pathogens in poultry processing. Objective 2: Evaluate and define the potential role of protozoa in shaping the ecology of bacterial pathogens in controlling foodborne pathogens in poultry processing environments. Objective 3: Develop algorithms for interpreting and handling sequencing data to aid in epidemiological tracking, defining differences in isolates of foodborne pathogens, including antibiotic resistance patterns, and predicting and determining the source of the isolate.

Approach:
The goals of this project fit into two major approaches: 1) development of alternative methods for processing poultry products, and 2) development of methods that accurately monitor the microbial quality of poultry products processed by alternative methods. The alternative methods include testing several novel chemical and physical decontamination procedures. The approach for most of this work is to apply the intervention strategy and compare the microbial quality of the treated poultry product with control product treated by standard methods. A long term objective is to develop systems of using protozoa as natural controllers of foodborne pathogens. This will involve studying the ecology of protozoa that feed on the pathogens and determining methods to enrich the processing environment with effective protozoa. Approaches for monitoring microbial quality will include enhancing the sensitivity and specificity of microbial detection. The project will also use genetic typing methods including whole genome sequencing and metagenomic sequencing to track specific clones of pathogens in and around poultry processing environments.