Skip to main content
ARS Home » Northeast Area » Ithaca, New York » Robert W. Holley Center for Agriculture & Health » Emerging Pests and Pathogens Research » Research » Research Project #429999

Research Project: Microbial and Arthropod Biological Control Agents for Management of Insect Pests of Greenhouse Crops and Trees

Location: Emerging Pests and Pathogens Research

Project Number: 8062-22000-020-000-D
Project Type: In-House Appropriated

Start Date: Oct 26, 2015
End Date: Oct 25, 2020

Objective 1: Integrate mycoinsecticides to manage selected insect pests of greenhouse crops, including, but not limited to, soil and foliar treatments for thrips control and for optimizing abiotic conditions. (NP304, Component 3, Problem Statement 3A2) Subobjectives: 1a. Characterize and quantify the effects of biotic and abiotic factors on efficacy of fungal pathogens applied against western flower thrips. 1b. Assess the potential of combining soil and foliar applications of fungi against western flower thrips as a strategy to achieve acceptable levels of efficacy at reduced moisture levels. Objective 2: Characterize pest microbial associates and determine the efficacy of microbial control agents to manage insect pests, including, but not limited to, Asian ambrosia beetles, walnut twig beetle, and coffee berry borer. Subobjectives: 2a. Determine effects of commercially available fungal biocontrol agents on Asian ambrosia beetles and their symbionts. 2b. Assess efficacy of commercially available entomopathogenic fungi for the walnut twig beetle. 2c. Assess efficacy of Beauveria bassiana against coffee berry borer in the Kona coffee-growing region on the island of Hawaii; determine best practices for effective deployment of this pathogen as one component of an area wide IPM program. 2d. Characterize the indigenous isolates of Beauveria infecting coffee berry borer in Hawaii and determine the roles of these pathogens in natural suppression of this insect pest. Objective 3: Determine the impact of natural enemies, such as parasitic wasps and microbial biopesticides, introduced for management of emerald ash borer. Subobjectives: 3a. Quantify EAB and parasitoid densities to determine whether establishment of EAB parasitoids has significant effects on EAB populations. 3b. Determine impact of natural enemies released against emerald ash borer on ash health and survival.

The goals of this project are to integrate entomopathogenic fungi into management systems for insect pests of greenhouse ornamental and vegetable crops and insect pests of trees in nursery, field, and natural settings and to track fungal strains in these environments. The work comprises fundamental laboratory studies as well as applied field and greenhouse research. This project will develop basic information on the biology of fungal pathogens associated with insects, their genetic and phenotypic variability, and their activity and persistence in field and greenhouse environments. Integration of fungal pathogens will be accomplished for management of key pests. Studies will identify minimal ambient moisture requirements for effective deployment of fungal pathogens against western flower thrips infesting greenhouse crops. Microbial control agents will be developed for management of Asian ambrosia beetles and walnut twig beetle. Application methods and strategies will be developed for optimal use of fungi against coffee berry borer in the Kona coffee districts of Hawaii. Parasitoid releases for management of emerald ash borer will be evaluated for their impact on their host and the resulting impacts on ash health and regeneration. Biological control agents used in the ways developed in this project will provide safe, effective biological alternatives to synthetic chemical insecticides or as rotational partners for insecticide resistance management.