Skip to main content
ARS Home » Midwest Area » Peoria, Illinois » National Center for Agricultural Utilization Research » Plant Polymer Research » Research » Research Project #428743

Research Project: Renewable Biobased Particles

Location: Plant Polymer Research

Project Number: 5010-44000-053-000-D
Project Type: In-House Appropriated

Start Date: May 19, 2015
End Date: May 18, 2020

Objective:
The goal of this research project is to use a wide range of technological approaches in the utilization of agricultural byproducts and feedstocks to improve functionalities of protein/carbohydrate particles for elastomer, coating, agricultural, medical, and cosmetic applications. Over the next 5 years, we will focus on the following objectives: Objective 1: Enable the commercial production of new products based on functionalized particles for applications in elastomeric composites and latex coatings. Objective 2: Enable new commercial processes to produce marketable biochar particles for rubber composite filler applications. Objective 3: Enable the commercial production of new products based on nano- or micro-particles for controlled-release of chemicals. Objective 4: Enable the commercial production of new products based on biodegradable nanoparticles from starch, and expand their end-use applications. Objective 5: Enable the commercial production of new products based on micro-and nano-sized particles of lignin and cellulose.

Approach:
The aim of this research is to develop biobased particle technologies that produce functional particles using renewable agricultural byproducts and feedstocks. The characteristics of the functional particles include size, shape, aggregate structure, and surface functionalities that can be changed for the particles to function as reinforcements in polymer matrices, hydrocolloids for modifying rheological and surface properties, and controlled-release vehicles for delivering chemicals. The outcome of this research will contribute to the utilization of voluminous byproducts generated by the biofuel and food industries, reduction of greenhouse gases responsible for climate change from carbon black production, and sustainability of the global economy. Currently, carbon black is the dominant filler in rubber products. Our previous research on biobased particles has produced natural rubber composites with useful mechanical properties. Further development will be on the regulation of particle connectivity and interface adhesion. Our masterbatch process will be extended to the rheology and films of latex coatings. Carbonized biomaterials as feedstock will also be developed as rubber filler with emphasis on the methods of biochar production to address performance, quality, and supply issues. We have produced nanoparticles of amylose complexes with steam jet cooking technology and will improve particle functionality for composite, coating, and medical applications. We will also develop nano-size cellulose/lignin for composite and cosmetic applications. For controlled-release applications using biobased particles, the functional particles to deliver chemicals, specifically pesticides, will be developed to solve wash-away issues and reduce pesticide consumption. The resulting technologies will be transferred to users who use these products.