Skip to main content
ARS Home » Northeast Area » Beltsville, Maryland (BARC) » Beltsville Agricultural Research Center » Adaptive Cropping Systems Laboratory » Research » Research Project #428181

Research Project: Development and Application of Mechanistic Process-Driven Crop Models for Assessing Effects and Adapting Agriculture to Climate Changes

Location: Adaptive Cropping Systems Laboratory

Project Number: 8042-61660-009-000-D
Project Type: In-House Appropriated

Start Date: Jan 1, 2016
End Date: Aug 12, 2018

Objective 1: Characterize responses of potato and soybean to the interacting effects of temperature and CO2. Objective 2: Improve mechanistic models for corn, potato, cotton and soybean to better account for growth and development responses to environment, genotype, and nutrient factors, and enable simulations of multi-year cropping rotations. Objective 3: Estimate the sensitivity of regional food production to climate change and contribute to international model intercomparison efforts.

Mechanistic models for soybean (GLYCIM), cotton (GOSSYM), corn (MAIZSIM), and potato (SPUDSIM), have been developed in previous projects by this group. The proposed research will broaden the capabilities of the corn and potato models by utilizing data from experiments carried out in unique, state-of-the-art sun-lit growth chambers and field plots. Short and long term experiments will be employed to test hypotheses and develop algorithms for plant processes to be used in the computer models. Data collected by collaborators will be used to test and evaluate the models. A simple Rye model will be developed to simulate a cover crop during the fall-winter season. A computer graphical user interface will be developed using components from the existing software program, GUICS, to allow a user to simulate long term crop rotations over multiple growing seasons. Advanced data management capabilities will be added to the interface to help with interpretation and management of input and output data. Tools for weather generation and estimation of soil hydraulic properties will be added to the interface to provide a wide range of environmental conditions for assessment. All crop models will be used within the new interface to assess the environmental and economic impacts of climate change on carbon sequestration, and nitrogen and water balances for relevant production systems.