Skip to main content
ARS Home » Southeast Area » Oxford, Mississippi » Natural Products Utilization Research » Research » Research Project #422013

Research Project: Discovery and Development of Natural Product-based Weed Management Methods

Location: Natural Products Utilization Research

Project Number: 6060-21410-010-00-D
Project Type: In-House Appropriated

Start Date: Sep 12, 2011
End Date: Oct 25, 2015

Objective 1: Discover natural product-based materials and technologies for weed and other pest management that would be accepted by organic farmers and/or farmers who desire more environmentally and toxicologically benign weed and other pest management tools. Subobjective 1.1: Discover uses of new and existing natural products for weed management in conventional and organic farming. Subobjective 1.2: Discovery of the mechanisms of action for newly discovered phytotoxins using chemical structure clues and physiological evaluations. Subobjective 1.3: Discovery of the mechanisms of action for newly discovered phytotoxins using a genetics approach with resistant mutants. Subobjective 1.4: Discovery of the mechanisms of action for newly discovered phytotoxins using transcriptome analysis. Objective 2: Identify and characterize the biochemical pathways of phenolic lipid-type allelochemicals and fungicides from cereals, and manipulate these pathways to produce enhanced allelopathic and disease-resistant crops with reduced requirements for synthetic herbicides and/or fungicides. Subobjective 2.1: Complete the characterization of the gene products of putative genes for enzymes of the sorgoleone biosynthetic pathway. Subobjective 2.2: Functional analysis of putative sorgoleone pathway enzymes by genetically engineering sorghum to either increase or reduce expression of the corresponding genes, and the use of these transformants to investigate the ecological role of sorgoleone. Subobjective 2.3: Identification of plant promoters to facilitate root hair-specific metabolic engineering of sorgoleone biosynthesis. Subobjective 2.4: Manipulation of phenolic lipid biosynthesis using rice and Arabidopsis models.

Conduct bioassays in collaboration with research chemists during bioassay-directed isolation of new phytotoxins. Molecular sites of action will be determined with genomic and biochemical approaches. Genes controlling synthesis of useful plant secondary products involved in plant defenses to pests will be identified, cloned, and manipulated.