Skip to main content
ARS Home » Northeast Area » Wyndmoor, Pennsylvania » Eastern Regional Research Center » Molecular Characterization of Foodborne Pathogens Research » Research » Research Project #421473


Location: Molecular Characterization of Foodborne Pathogens Research

Project Number: 8072-12000-011-00-D
Project Type: In-House Appropriated

Start Date: Apr 5, 2011
End Date: Apr 4, 2016

1. Overcome yield reductions due to the negative impacts on indigenous arbuscular mycorrhizal [AM] fungi of repetitive tillage and cultivation to control weeds in organic farming through inoculation with AM fungi produced via the on-farm system. 2. Optimize utilization of arbuscular mycorrhizal symbiosis to enhance crop growth and yield. 2.1) Develop greenhouse media and nutrient regimes for the production of AM fungus colonized seedlings in organic management. 2.2) Develop methods for the production of AM fungus colonized sweet corn seedlings in the greenhouse and quantify growth and yield response after outplanting. 2.3) Examine the functioning of AM fungi in high P soil in the field by determining the response to inoculation with AM fungi in field plots with greatly reduced AM fungus populations due to long term bare fallow. 3. Increase the acquisition of nitrogen by crop plants via mycorrhizal symbiosis by manipulating the regulatory processes of N uptake by arbuscular mycorrhizal fungus hyphae.

Arbuscular mycorrhizal [AM] fungi form a mutualistic symbiosis with the roots of the majority of crop plants. Among the benefits the plant receives are enhanced mineral nutrient uptake, drought resistance, and disease resistance. These benefits make optimal utilization of the symbiosis important to ensure the economic and environmental sustainability of US agriculture. One way to utilize the symbiosis is to inoculate vegetable seedlings with AM fungi in the greenhouse, prior to out planting in the field. This allows plants to benefit from the symbiosis immediately. We will develop inoculation strategies and greenhouse culture regimes for organic farmers to produce well colonized seedlings. Further, we will examine two farming practices that should benefit from inoculation: growth of sweet corn seedlings in the greenhouse for early transplant to the field and transplant of vegetable seedlings into soil repetitively cultivated to produce a stale weed seedbed to control weeds. Throughout, we will utilize AM fungi produced via our system for the on-farm production of inoculum. In addition, we will study the functioning of AM fungi. We will study how the nitrogen uptake and transfer to the host plant is regulated by the photosynthetic capacity of the plant. Phosphorus (P) availability is the most important regulator of development and efficacy of the symbiosis. We will conduct field experiments at the Rodale Institute to determine if plant response to the symbiosis in high P soil is affected more by the vigor of the native population of AM fungi or by intrinsic properties of the host plant which determine responsiveness. These studies will yield targeted strategies for utilization of AM fungus inoculum.