Page Banner

United States Department of Agriculture

Agricultural Research Service


Location: Integrated Cropping Systems Research

Project Number: 3080-12620-003-00-D
Project Type: In-House Appropriated

Start Date: Apr 19, 2011
End Date: Oct 25, 2015

1. Determine the effects of tillage, corn residue removal, cover crop, and crop rotation on soil physical, chemical, and biological properties including greenhouse gas and soil carbon dynamics in conventional and organic agricultural production systems. Contribute to multi-location projects including Greenhouse gas Reduction through Agricultural Carbon Enhancement network (GRACEnet) and Renewable Energy Assessment Project (REAP). 2. Assess soil-landscape rehabilitation (movement of soil from areas of net accumulation to areas of net soil loss) as a means of improving soil characteristics, soil productivity, farm profitability, pesticide persistence and mobility, and soil erosion. 3. Develop crop rotation, soil nutrient cycling, corn residue removal and pest management practices that improve farming efficiency (increase unit output/unit input), and manage soils in a holistic approach to improve crop yield and quality while maintaining or reducing production inputs.

The need to produce ever-increasing amounts of food, feed, fiber, and biofuel feedstocks for a growing world population, increased production costs, and fluctuating commodity prices are difficult challenges faced by our customers. Additionally, potential global climate effects on the local environment, degradation of soil resources, and depletion of non-renewable resources (e.g., oil and phosphorus fertilizers) are important concerns of farmers in our region and throughout the U.S. To answer these challenges and concerns, we are conducting research to optimize soil, crop and pest management practices and to synthesize them into integrated production systems that are economically sound, environmentally sustainable, and provide maximized production efficiency. This interdisciplinary project aims to define, for the unique conditions of the northwest Corn Belt and northern Great Plains, the relationships between soil, crop, and pest management and the conservation of the soil resource. This work is essential for the development of integrated production systems and sustainable agriculture in this region. Transfer of these integrated production systems to our customers through fact sheets, management guides, field day presentations, and other mechanisms will lead to increased production efficiency, improved soil quality, rehabilitation of degraded soil resources, improved profitability, and reduced risk.

Last Modified: 05/21/2017
Footer Content Back to Top of Page