Skip to main content
ARS Home » Midwest Area » Ames, Iowa » National Animal Disease Center » Virus and Prion Research » Research » Research Project #421211


Location: Virus and Prion Research

Project Number: 5030-32000-109-00-D
Project Type: In-House Appropriated

Start Date: Oct 6, 2011
End Date: Oct 5, 2016

Objective 1: Identify the transmission, genetic, and pathogenic mechanisms of the organisms associated with PRDC, concentrating on the bacterial pathogens and their interactions with each other and select swine viruses. Subobjective 1.1: Identify potential virulence factors of H. parasuis through comparative genomics. Subobjective 1.2: Bacterial response to host conditions. Subobjective 1.3: Evaluate ability of PRDC bacterial pathogens to inhibit Influenza A virus vaccine efficacy and/or exacerbate Influenza A virus-associated disease. Objective 2: Identify potential candidates for novel diagnostic assays, vaccines, and biotherapeutics for bacterial pathogens associated with PRDC. Subobjective 2.1. Develop PCR, ELISA, and/or other assays for detection of bacterial pathogens associated with PRDC. Subobjective 2.2. Identify, develop and/or test the efficacy of potential vaccine candidates to control bacterial pathogens associated with PRDC. Subobjective 2.3. Identify potential biotherapeutic candidates to control bacterial pathogens associated with PRDC. Objective 3: Investigate emerging and potential zoonotic bacterial pathogens that could impact the swine industry and design measures to diagnose, prevent, control and eliminate the threat posed to the swine industry. Subobjective 3.1. Evaluate the relationship between highly pathogenic Asian strains of PRRSV and S. suis infection in swine. Subobjective 3.2: Identification of measures that may prevent, control, or eliminate livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) Sequence Type 398 (ST398) in swine.

Use comparative genomic methods, microarray analysis, and co-infection studies to explore pathogenic mechanisms of bacteria associated with the porcine respiratory disease complex and their interactions with each other and swine viruses. Assess the usefulness of selected genes or proteins identified in comparative genomic analyses for DNA-based identification and classification, serological detection of infection, and potentially as vaccine candidates. Strategies for improved heterologous protection will be tested using live attenuated vaccines, as will the use of immunomodulators, such as granulocyte colony stimulating factor (G-CSF), for therapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease and thus reduce antimicrobial usage to treat clinical and subclinical disease. Investigate emerging and potential zoonotic bacteria that could impact the swine industry, including Methicillin-resistant Staphylococcus aureus (MRSA) and Streptococcus suis for antimicrobial resistance and virulence factors through sequencing and proteomics. Investigations will focus on pathogen strain characteristics and differences, interactions of bacterial and viral pathogens with the swine host and the microbial ecosystems of the pig. Pathology of both zoonotic and endemic bacterial pathogens of swine will be utilized for the purpose of understanding disease pathogenesis and developing effective diagnostic assays.