Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Conservation Systems Research for Improving Evnironmental Quality and Producer Profitability

Location: Soil Dynamics Research

2013 Annual Report


1a. Objectives (from AD-416):
Develop conservation tillage systems technologies for Southeastern soils (Coastal Plain, Tennessee Valley, Piedmont, and Blackbelt) that improve soil quality, increase plant available water, improve profitability, and conserve natural resources. Specific objectives include: (1) develop cover crop management technologies that enhance soil protection from rainfall events, increase soil organic matter accumulation, and suppress weeds; (2) develop and evaluate row crop production technologies that enhance sustainability, productivity, and environmental quality of degraded soils and increase plant available water; and (3) integrate new components and technologies into conservation management systems that reduce soil erosion, drought stress, and risk associated with production agriculture.


1b. Approach (from AD-416):
Coordinated plot and field-scale studies will be implemented to develop strategies for managing soils to reduce economic risks of short-term drought and increase farm profitability, improve soil quality, and enhance carbon storage. Problems include: (1) increasing crop rooting depth; (2) improving soil properties associated with infiltration and water retention; (3) developing decision aides for improved soil and water management and increased profitability; (4) developing integrated weed management strategies through improved understanding of interactions between cover crop residue and weed biology/ecology; (5) developing design principles for improved implements that facilitate management of cover crops, soil compaction, and high-residue conservation cropping systems; and (6) assess and predict economic viability of conservation practices.


3. Progress Report:
This is the final report for a two year bridge project 6420-12610-004-00D designed to keep us on sequence with other NP 216 projects. The final report for the original project was previously submitted, but the objectives and milestones completed under the life of bridge project will be summarized here. Substantial progress has been made in relation to conservation systems that include cover crops. New equipment designs related to cover crop management have generated renewed interest in the adoption of conservation systems, particularly for small vegetable farmers as evidenced by increased attendance at field days for small producers. Combining rolling operations with reduced herbicide use resulted in 80% of the herbicide saved that directly translates into monetary and environmental benefits for growers. Alternative control strategies that include cover crops and residual herbicides are being widely promoted by the Natural Resource Conservation Service (NRCS) and cooperative extension systems across the southeast to help control resistant weeds without the need for intensive tillage, which is a detriment to soil quality. Traditional production agriculture research related to conservation systems has also continued. Examining Nitrogen (N) requirements for winter wheat across fall tillage systems showed that N applied early in the spring across tillage systems is recommended and this information has been a popular topic for field days and other grower meetings across the state. Research efforts to examine the N contribution of a recently released sunn hemp cultivar for wheat are currently underway. Research examining N requirements and nutrient uptake and removal for forage sorghums used as a bioenergy source are near completion. Multiple sampling efforts to monitor changes in soil carbon levels have been completed with on-going laboratory analysis near completion. Technology transfer activities have continued, which have focused primarily on how to manage conservation systems to maximize the benefits. Typically, these activities are multi-disciplinary in order to highlight these benefits. New research has also been initiated that is designed to make economic comparisons for conservation systems and demonstrate to growers various scenarios to illustrate potential profitability and risk. Economic comparisons across these systems must continually be weighed against environmental concerns to ensure producers and natural resources remain viable well into the future. This type of information is being incorporated into the development of a dynamic programming model designed to identify the optimal crop rotation, while maximizing profits from cotton production. Once the model is complete, it can be easily adapted to scenarios applicable to other crops and will be a useful tool to demonstrate how conservation practices affect growers’ bottom line.


4. Accomplishments


Review Publications
Price, A.J., Norsworthy, J.S. 2013. Cover crop use for weed management in Southern reduced-tillage vegetable cropping systems. Weed Technology. 27(1):212-217.

Tapley, M., Ortiz, B.V., Van Santen, E., Balkcom, K.S., Mask, P., Weaver, D.B. 2013. Location, seeding date, and variety interactions on winter wheat yield in Southeastern United States. Agronomy Journal. 105:509-518.

Faircloth, W.H., Rowland, D., Lamb, M.C., Balkcom, K.S. 2012. Interaction of tillage system and irrigation amount on peanut production and long-term sustainability in the Southeast. Peanut Science. Vol. 39, No. 2, pp. 105-112.

Kelton, J.A., Price, A.J., Patterson, M.G., Monks, C.D., Van Santen, E. 2013. Evaluation of tillage and herbicide interaction for amaranthus control in cotton. Weed Technology. 27:298-304.

Aulakh, J.S., Price, A.J., Enloe, S.F., Van Santen, E., Wehtje, G., Patterson, M. 2012. Intergrated palmer amaranth management in glufosinate-resistant cotton: I. Soil-inversion, high-residue cover crops and herbicide regimes. Agronomy. 2:295-311.

Aulakh, J.S., Price, A.J., Enloe, S.F., Wehtje, G., Patterson, M. 2013. Integrated palmer amaranth management in glufosinate-resistant cotton: II. primary, secondary, and conservation tillage. Agronomy. 3:28-42.

Reberg-Horton, S.C., Grossman, J., Kornecki, T.S., Meijer, A.D., Price, A.J., Place, G.T., Webster, T.M. 2012. Utilizing cover crop mulches to reduce tillage in organic systems in the southeastern USA. Renewable Agriculture and Food System. 27(1):41-48.

Price, A.J., Balkcom, K.S., Duzy, L.M., Kelton, J.A. 2012. Herbicide and cover crop residue integration for Amaranthus control in conservation agriculture cotton and implications for resistance management. Weed Technology. 26(3):490-498.

Kornecki, T.S., Arriaga, F.J., Price, A.J., Balkcom, K.S. 2012. Effects of different residue management methods on cotton establishment and yield in a no-till system. Applied Engineering in Agriculture. 28(6):787-794.

Ortiz, B.V., Balkcom, K.B., Duzy, L.M., Van Santen, E., Hartzog, D.L. 2013. Evaluation of agronomic and economic benefits of using RTK-GPS-based auto-steer guidance systems for peanut digging operations. Precision Agriculture. 14(4):357-375.

Mourtizinis, S., Arriaga, F.J., Balkcom, K.S., Ortiz, B.V. 2013. Corn grain and stover yield prediction at R1 growth stage. Agronomy Journal. 105:1045-1050.

Price, A.J., Kelton, J.A. 2013. Integrating herbicides in a high-residue cover crop conservation agriculture setting. In: Price, A.J., editor. Herbicides-Current Research and Case Studies in Use. Intech Press, Rijeka, Croatia. ISBN 978-953-51-1112-2. 652 p.

Last Modified: 10/17/2017
Footer Content Back to Top of Page