Skip to main content
ARS Home » Pacific West Area » Hilo, Hawaii » Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center » Tropical Crop and Commodity Protection Research » Research » Research Project #420794

Research Project: Pre and Postharvest Treatment of Tropical and Other Commodities for Quarantine Security, Quality Maintenance, and Value Enhancement

Location: Tropical Crop and Commodity Protection Research

Project Number: 2040-43000-016-00-D
Project Type: In-House Appropriated

Start Date: Dec 20, 2010
End Date: Jul 7, 2015

The long term goals of our research program are to develop and protect U.S. export markets for fresh tropical commodities with emphasis on expanding and diversifying agriculture and agricultural exports in Hawaii and other states by providing environmentally sound, economically viable systems, treatments, or processes that control quarantine pests, ensure product quality and food safety, and increase product value while safeguarding the agriculture of other states. Our research will address three objectives over the next 5 years: (1) Develop new or improved postharvest treatments, including alternatives to methyl bromide, for tropical fruit, vegetable, and ornamental crop exports to ensure security against quarantine pests and to meet quarantine requirements of U.S. trading partners; (2) Develop new or improved postharvest treatments for tropical fruit, vegetable, nut and ornamental crops to improve product quality and shelf life, reduce or eliminate postharvest disorders or decay, and enhance product value; and (3) Identify, develop or improve preharvest methods for tropical fruit, vegetable, nut, and ornamental crops that enhance postharvest quality and reduce the incidence of quarantine pests that limit exports.

The approach is to develop quarantine treatments, such as low dose irradiation and hypobaric treatments, and other mitigation techniques for fresh tropical commodities and ornamental crops. Quarantine irradiation treatments will be developed for light brown apple moth, papaya mealybug, and green scale. Optimum hypobaric treatment parameters for controlling Caribbean fruit fly, Mediterranean fruit fly, oriental fruit fly, and melon fly will be determined. We will establish the tolerance of tropical fruit to any new or modified quarantine treatments, including the quality of diverse assortments of tropical fruit following irradiation treatment. To expand markets for high-value specialty fruit, we aim to develop postharvest disease control and packaging strategies to extend shelf-life. Also, preharvest practices that reduce the incidence of quarantine pests that limit exports will be investigated, such as non-chemical alternatives to control thrips on orchids, essential oil formulations for control of waxy insects on ornamental crops, and biological control of white peach scale on papayas.