Skip to main content
ARS Home » Southeast Area » Mississippi State, Mississippi » Crop Science Research Laboratory » Genetics and Sustainable Agriculture Research » Research » Research Project #420666

Research Project: Safe Management and Use of Manure, Biosolids, and Industrial Byproducts

Location: Genetics and Sustainable Agriculture Research

Project Number: 6406-12630-006-00-D
Project Type: In-House Appropriated

Start Date: Jan 3, 2011
End Date: Sep 30, 2013

Develop improved manure (swine lagoon effluent and poultry litter) application and management practices that reduce nutrient losses to the environment, increases utilization by crop plants, increase recycling of nutrients, and enhance soil quality. Determine and reduce bacterial pathogen levels in manured fields and assess impacts on soil fungal and bacterial ecology, including antibiotic resistance. Determine ammonia and greenhouse gas emissions from broiler houses and manured fields and develop management practices to reduce them. Evaluate the benefits and potential risks from possible new uses of manure and industrial byproducts (e.g. FGD gypsum).

Multidisciplinary approach will be utilized in converting “wastes” into valuable inputs for energy, forage, fiber, and grain crops. Presence, prevalence, and fate of nutrients, gaseous emissions, bacterial approaches, antibiotic resistance, and soil fungi associated with swine and poultry manure, municipal biosolids, and waste-impacted soils, plants, air, and water will be addressed. New uses of manure will be investigated, including swine manure for bioenergy crops, poultry litter for plant disease biocontrol, and litter with gypsum for remediation of degraded soil. Experiments employ a combination of traditional methods and state-of-the-art techniques and equipment. Work will be done in cooperator rearing houses and manure storage areas on confined animal feeding operations and in crop fields of manure end users. Contamination of soil, water, air, and plants from land application of manure and biosolids will be assessed and off-site transport of nutrients, pathogens, and antibiotic resistance will be determined. Information will be developed into best management practices to protect the environment and human and animal health by maximizing crop nutrient utilization, minimizing bacterial contamination and antibiotic resistance, reducing ammonia and greenhouse gas emissions, and exploiting biocontrol potential.