Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Grass-Legume Mixtures to Enhance Sustainability of Irrigated Pastures

Location: Forage and Range Research

2013 Annual Report

1a. Objectives (from AD-416):
Recent high costs of nitrogen fertilizer and the need for increased environmental stewartship necessitate a renewal of the mixed grass-legume pasture. Past research was not indicative of the irrigated, rotational grazing systems common to the western U.S. There are few guidelines on which species and grass-legume ratios optimize economic and environmental sustainability. This experiment proposes to (1) compare livestock performance, economics, and subsequent meat quality of beef produced from grass monocultures versus low- and high- tannin grass-legume mixtures, (2) determine best possible grass-legume mixtures and plant densities that maximize pasture productivity, and (3) determine if high-tannin legumes can reduce potential nitrogen-based environmental impacts in grass grazing systems. Overall this research will evaluate the economic and environmental benefits of grass-legume pasture mixtures as compared to using commercial nitrogen fertilizer.

1b. Approach (from AD-416):
Objective 1. Livestock performance and carcass characteristics will be evaluated using thirty six Angus crossbred steers grazing the following four treatments: 1) tall fescue with no fertilizer, 2) tall fescue with fertilizer, 3) tall fescue-alfalfa mixture, and 4) tall fescue-birdsfoot trefoil mixture. Treatments will be arranged in a randomized complete block design with three pasture replicates, four paddocks per pasture, and three steers per pasture. Grazing will be for 7 days per paddock on a 28-day rotation interval. Forage samples will be obtained and steer body weight will be recorded at 28-d intervals throughout the study. Forage samples, and ruminal fluid and blood samples will be obtained on day 0, 28, 84, and 140 for analysis of ruminal fermentation, metabolism, and fatty acid (FA) composition. At the end of the grazing period, steers will be slaughtered at a commercial meat plant, and carcasses will undergo FA analysis, tenderness, sensory panel evaluation, and lipid and color stability measurements. A fifth treatment consisting of a typical feedlot-based diet will be included in order to compare pasture- and feedlot-finished cattle. All procedures and data collection will be similar to those described in the grazing treatments. Objective 2. Optimum grass-legume mixtures will be determined by evaluating tall fescue, meadow brome, orchardgrass, alfalfa, birdsfoot trefoil, and cicer milkvetch in grass/legume binary mixtures. Legume plant densities of 0 (with N fertilizer), 0 (without N fertilizer), 25, 50, 75, and 100 percent will be tested with each grass for a total of 48 treatments. Grazing pressure will be applied to the entire experiment for 7 days on a 28-day rotational interval. Immediately prior to each grazing period, one-half of each plot will be harvested with a forage plot harvester. Forage production and forage quality parameters including crude protein, neutral detergent fiber, acid detergent fiber, acid detergent lignin, and in vitro true digestibility will be evaluated. Objective 3. The effects of tannins on nutrient cycling will be evaluated for the plant, soil, and soil water phases. Plant samples will be collected before and after each grazing event and herbage dry matter and total nitrogen (N) will be analyzed to determine the nutrients removed in the forage. Soil samples will be collected in the spring, prior to grazing, and in the fall after the growing season to a depth of 1.5 meters. Four soil cores will be taken in each plot and divided into three subsamples: 0-30 cm, 30-60 cm, 60-152 cm. Composite soil subsamples for each depth will be analyzed for available nitrogen (ammonia and nitrate) and for total Nitrogen. Soil water (leachate) nitrogen will be monitored by means of zero-tension lysimeters that were previously installed to a 120 cm depth. Leachate will be collected from the lysimeter collection basin every two weeks during the growing season and winter months. Samples will be analyzed for nitrate-nitrite. A mass balance approach comparing total nitrogen outputs against total nitrogen inputs for each treatment will be utilized to estimate losses due to volatilization.

3. Progress Report:
During FY-2013: A 2-yr grazing study was completed evaluating the effects of finishing beef cattle grazed on tall fescue (TF) pastures without or with nitrogen (N) fertilization on growth performance, ruminal fermentation, and carcass characteristics. Overall results indicate that N fertilization on TF affected ruminal fermentation and increased growth. During FY2013, an additional manuscript was submitted to the journal entitled, “Professional Animal Scientist,” and two poster presentations were made at the 2013 ADSA-ASAS Meeting at Indianapolis. A related study is now evaluating cattle performance when grazing grass-legume mixtures. During FY2013, the first year of this study was completed evaluating beef steers grazing tall fescue (TF) pastures with or without low- and high-tannin legumes and the resulting effects on growth performance, ruminal fermentation, and carcass characteristics. In response to grass-legume mixtures, the preliminary (1-yr) average daily gains (ADG) were 1.7, 1.4, 1.4, and 0.8 pounds per day for TF+Birdsfoot trefoil, TF+Alfalfa, TF+Nitrogren Fertilizer, and TF-Nitrogren Fertilizer, respectively, with the TF no fertilizer being statistically lower than the other treatments. Forage yields followed a similar pattern with the TF+ fertilizer yield being the highest (4950 lbs/acre) but not significantly different than mixtures with alfalfa and birdsfoot trefoil, and all three being higher than TF with no fertilizer (3591 lbs/acre). Carcass quality and forage yield and quality data are being analyzed. This study will be repeated for a second year. This research is being conducted in partial completion of a M.S. thesis and results were presented by the graduate student at the Western Society of Crop Science meetings in Pendleton, OR. A small-plot of binary mixtures of five grasses [orchardgrass (OG), tall fescue (TF), meadow brome (MB), timothy, and perennial ryegrass (PR)] and three legumes [alfalfa (AF), birdsfoot trefoil (BF), and cicer milkvetch (CM)] were established previously. Ratios in the mixtures included 0, 25, 50, and 75% legume composition. Results revealed that tall fescue, OG, and MB grass-legume mixes averaged 6.0, 5.0, and 14.0% higher forage production than their respective grass monocultures. The highest seasonal forage production of TF combinations was 1.62 Mg/ha TF:AF (50:50), 1.63 Mg/ha TF:BF (75:25), and 1.64 Mg/ha TF:CM (75:25). Highest forage production of OG combinations was 1.10 Mg/ha OG:AF (50:50), 1.09 Mg/ha OG:BF (75:25), and 0.99 Mg/ha OG:CM (75:25). Highest seasonal forage production of MB combinations was 1.23 Mg/ha MB:AF (50:50), 1.25 Mg/ha MB:BF (75:25), and 1.11 Mg/ha MB:CM (75:25). These results suggest that grass-legume mixtures can be an effective strategy to improve pasture productivity. Mixtures with cicer milkvetch and birdsfoot trefoil were most productive when they constituted 25% of the mix, whereas, mixtures with alfalfa were most productive when it comprised 50% of the mix. This research was conducted in partial completion of a M.S. thesis, and was presented at two professional meetings. Nutrient cycling data were collected in FY2013. Soil subsamples are analyzed for available nitrogen (ammonia and nitrate) and for total N by combustion. Leachate samples were collected every two weeks during the growing season. Samples will be analyzed for nitrate-nitrite. Plant samples, collected before and after each grazing event, are used to determine the nutrients removed in the forage. A mass balance approach comparing total nitrogen outputs against total nitrogen inputs for each treatment will be utilized to estimate losses due to volatilization. The effect of tannins on nitrogen cycling will be examined.

4. Accomplishments

Last Modified: 10/18/2017
Footer Content Back to Top of Page