Skip to main content
ARS Home » Plains Area » Manhattan, Kansas » Center for Grain and Animal Health Research » Stored Product Insect and Engineering Research » Research » Research Project #420587


Location: Stored Product Insect and Engineering Research

Project Number: 3020-43440-007-00-D
Project Type: In-House Appropriated

Start Date: Nov 4, 2010
End Date: Jun 15, 2015

Our overall objective is to maintain and improve grain quality and international competitiveness through the application of engineering principles. Most of our work concentrates on measuring properties of single kernels so that they can be segregated or the distribution of properties in a sample can be ascertained, versus measuring the average quality of a bulk sample. In general, the project will include the development of instruments to improve rapid (up to 500 kernels/s) measurement of grain quality at receiving stations, the development of non-destructive and rapid (up to 500 kernels/s) single-kernel sorting systems to improve post-harvest grain quality and similar systems to help grain breeders rapidly select specific traits for improved lines, and improve grain-storage and handling systems. Specific objectives are: 1. Develop sensors and methods to rapidly and accurately quantify attributes such as protein composition, starch composition, end-use quality, toxins, and micronutrients. 1.A. Develop or apply spectroscopic technologies that offer significant improvements over current technologies used to measure traits of single kernels and other biological materials. 1.B. Adapt a previously developed conductance mill for detection of live-insect infestations in wheat in other grains such as corn, rice, barley, and oats, and to dry beans, such as pinto and navy beans. 1.C. Develop procedures for rapid estimation of insect fragments in milled flour from minimally processed whole wheat. 2. Develop rapid single-kernel sorting systems to accurately remove defects such as fungal or insect-damaged grain and to isolate beneficial traits such as white wheat. 2.A. Develop high-speed, low-cost, image-based sorting systems for a variety of grains and legumes. 2.B. Develop Near-infrared spectroscopy (NIRS) -based, single-seed sorting systems for large grains and legumes. 2.C. Investigate applications of single-kernel NIRS technology to select kernels with specific traits. 3. Develop instrumentation, sensors, and systems to improve monitoring, and management of grain storage. 3.A. Develop traceability and identity-preservation techniques for grain handling. 3.B. Develop new stored-grain packing factors for the common grains in trade with known confidence intervals for a complete range of field conditions. 3.C. Investigate insect-pest densities and commingling of insects in grain that causes the spread of an infestation from bucket elevator boots. 3.D. Develop monitoring systems for grain-storage quality management. 3.E. Develop improved, environmentally-friendly insect-pest control methods for stored grain. While the objectives of this project include pre-harvest (seeds) and post-harvest handling of grain, the work is interconnected in that the overall goal is to improve the quality of grain produced in the United States. Instruments developed to assess grain quality will be used to study how grain quality might change during storage and handling. An instrument previously developed by this group to detect insect-infested grain will be used to study the spread of insect infestations and the storability of grain based on insect population levels.

U.S. farmers grow over 15 billion bushels of corn, wheat, soybeans, and other grains annually to supply the nation and world with food, animal feed, and biofuels. A significant amount of this grain may be stored for a year or more before it is used or processed. Our goal is to improve U.S. grain quality and international competitiveness through the application of engineering principles, specifically to the areas of rapid (inspection results from at least 60 individual kernels per minute) quality measurement and in maintaining quality during storage. Much of our research concentrates on measuring the distribution of quality within samples, and on detecting traits that are present at very low levels. We propose to develop instruments to rapidly (up to 500 kernels/s) measure quality traits for inspection at the first point of grain delivery, for breeders in selecting traits for new lines, and for processors prior to grain buying or processing. We also propose to develop chemical-free technology to control insects and maintain quality during handing and storage. This research will lead to higher profits for the agriculture sector, higher-quality foods reaching consumers, and more food available for a growing world population.