Skip to main content
ARS Home » Midwest Area » Columbia, Missouri » Biological Control of Insects Research » Research » Research Project #420330


Location: Biological Control of Insects Research

Project Number: 5070-22000-035-00-D
Project Type: In-House Appropriated

Start Date: Aug 19, 2010
End Date: Aug 18, 2015

The long-term objective of this project is to develop improved strains of beneficial insects and baculoviruses through traditional breeding techniques. The specific objectives are to: 1) select and develop beneficial lines of a predator, the spined soldier bug, Podisus maculiventris, for improved bionomic traits such as increased female fecundity, sex ratio, development time, and shelf life, 2) select and develop baculovirus lines for important biopesticide traits such as increased speed of kill, persistence, and broadened host range, and 3) in partnership with small and urban vegetable growers, develop novel beneficial insect and baculovirus delivery systems for application, using such strategies as chemical attractants, artificial diets, and release mechanisms.

The goal of this research is to select biological control agents with improved traits for controlling pest insects in greenhouse, organic and small field applications. This project will generate a highly fecund line of the spined solder bug, Podisus maculiventris (and if time permits, a line tolerant to cold storage) and naturally occurring stable, efficacious strains of the celery looper baculovirus, Anagrapha falcifera nucleopolyhedrovirus. We will measure genetic variation within and between the predator populations and the virus populations to assess their potential for selection procedures. Initially we will use egg production traits to direct the selection of predator lines and virulency to direct the selection of virus lines. For the predator lines, genetic variation will be assessed and polymorphisms will be used to identify and confirm associations between genotype and the high fecund phenotype. For the virus strains, genetic variation will be assessed and variable regions will be sequenced to identify genes related to efficacy and stability. Together, this research will produce significant advancements in knowledge of the genomic basis underlying complex traits. It also will build our capability to breed lines of insects and strains of viruses with enhanced production traits and pest control efficacy. We have established collaborations to test the improved lines of predators and viruses at the greenhouse and small plot levels. Two key end products, which we will transfer to industry and producers, will be improved beneficial agents with increased value to commercial insectaries and producers and the technology required to achieve these improved agents.