Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: DEVELOPING BENEFICIAL USES OF AGRICULTURAL, INDUSTRIAL, AND MUNICIPAL BYPRODUCTS

Location: Adaptive Cropping Systems Laboratory

2013 Annual Report


1a. Objectives (from AD-416):
Evaluate the environmental risks and benefits from agricultural applications of agricultural and industrial byproducts (e.g., FGD-gypsum, compost/manure) including uses to remediate disturbed soils and to sequester and phytoremediate metal from metal contaminated soils.


1b. Approach (from AD-416):
Develop and/or modify existing analytical methods to evaluate physical and chemical properties of byproducts and the potential environmental risks and benefits from their use in agriculture. Characterize mercury (Hg) emissions from FGD-gypsum amended soils. Evaluate plant species recommended for phytoextraction of Cd from U.S. contaminated soils requiring remediation to protect food safety.


3. Progress Report:
In 2013, ARS scientists collected, compiled, evaluated and analyzed data from experiments in which industrial, municipal and agricultural byproducts such as flue gas desulfurization-gypsum (FGDG), poultry litter ash, drinking water treatment residual, steel slag, biochar and compost were used in remediating nutrient and metal contaminated soils to prevent metal uptake by vegetable and agronomic crops. Data showed that these byproducts were very effective when used as plant nutrients and for remediation of phosphorus and metals contaminated soils. Metals concentrations within the tissue of plant grown on the byproducts amended soils were below levels considered to be phytotoxic and should cause no problem to human and animals that consume these crops. Using these materials is an inexpensive way to remediate several thousand acres of excess plant nutrients and metal and organic chemical contaminated soils in the U.S. It has been estimated that removal of 24 inches of contaminated top soil and replacing it with clean soil would cost $1.3 million per acre. The use of these amendments will reduce reclamation cost and reduce the need for additional landfill. Data collected from these studies will be used in developing risk assessment for some of these byproducts. Data from these studies will also provide information to industries, researchers and extension service on risk/benefit of utilizing these materials in agriculture.


4. Accomplishments


Review Publications
Codling, E.E. 2011. Environmental impact and remediation of residual lead and arsenic pesticides in soil. In: Stoytcheva, M., editor. Pesticide in the modern world-risks and benefits. www.intechopen.com: INTECH Open Access Publisher. p. 169-180.

Codling, E.E., Eickhoff, B. 2012. Distribution of plant nutrient elements and carbon in particle size fractions of broiler litter ash. Open Agriculture Journal. 6:48-52.

Codling, E.E. 2013. Effects of broiler litter ash, layer manure ash and calcium phosphate on corn, wheat and soybean growth, phosphorus and arsenic uptake. Journal of Plant Nutrition. 36:1083-1101.

Cabello-Conejo, M.I., Centofanti, T., Kidd, P.S., Prieto-Fernandez, A., Chaney, R.L. 2012. Evaluation of plant growth regulators to increase Ni phytoextraction by Alyssum species. International Journal of Phytoremediation. 15(4):365-375.

Broadhurst, C.L., Bauchan, G.R., Murphy, C.A., Tang, Y., Pooley, C.D., Davis, A.P., Chaney, R.L. 2013. Accumulation of zinc and cadmium and localization of zinc in Picris divaricata. Environmental and Experimental Botany. 87:1-9.

Centofanti, T., Sayers, Z., Cabello-Conejo, M.I., Kidd, P., Nishizawa, N.K., Kakei, Y., Davis, A.P., Sicher, Jr., R.C., Chaney, R.L. 2013. Xylem exudate composition and root-to-shoot nickel translocation in Alyssum species. Plant and Soil. DOI 10:1007/s11104-013-1782-1.

Last Modified: 10/17/2017
Footer Content Back to Top of Page