Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: SUSTAINABLE PRODUCTION SYSTEMS FOR TROPICAL TREE CROPS

Location: Sustainable Perennial Crops Laboratory

2012 Annual Report


1a. Objectives (from AD-416):
The goal of this project is to develop sustainable management systems to improve the productivity and sustainability of cacao cultivation. To accomplish this goal the following objectives will be addressed. Objective 1: Identify cacao genotypes with superior ability for establishment under conditions of environmental stress. Objective 2: Evaluate effects of tropical legume cover crops on factors affecting yield of cacao. Objective 3: Characterize and manage soil nutritional components essential for optimal cacao yield. Objective 4: Develop improved cacao crop management systems that maintain or improve environmental conditions.


1b. Approach (from AD-416):
The goal of this project is to identify cacao genotypes with superior ability for establishment under prevailing environmental stresses, and to develop sustainable management systems to improve the productivity and sustainability of cacao cultivation. Leguminous cover crops in early cacao establishment can protect soil from degradation by erosion and prevent weed infestation; therefore the influences of shade, soil acidity and micronutrients on growth and development of cover crops will be determined. Influences of cacao and cover crop management practices on changes of soil quality parameters (physical, chemical, biological) and nutrient components essential for maximum cacao production will be determined. Work will be conducted in controlled environmental chambers, greenhouses and field plots. We have developed collaboration with government and non-governmental research institutes, and universities in Peru, Brazil, Puerto Rico, and Ecuador to establish large scale field trials. Cacao genotypes with superior ability for establishment under abiotic stresses will be identified and incorporated in cacao improvement programs. Improved management systems will be developed, based on the results of this research, to enhance cacao yield potentials and bean quality and further improve soil fertility and halt the soil degradation.


3. Progress Report:
In FY 2012, progress was made in implementation of field research at the Tropical Crop Research Institute (ICT) in Tarapoto, Peru in establishing a clonal cacao garden to evaluate the performance of national and international cacao genotypes. International cacao clones from University of Reading, UK have been transferred to ICT, Peru and these clones and wild clones collected from the Peruvian Amazon river basins are being established in the clonal gardens for further evaluations. At this location long term field study has been established to evaluate cacao genotypic response to management. Soil quality parameters are being determined and related to bean production and quality. In collaboration with scientists of USDA-ARS Mayaguez, Peru, a field study is being established to evaluate cacao genotypic response to varying levels of soil acidity. In collaborative work at the State University of Santa Cruz (UESC) Bahia, Brazil under a specific cooperative agreement, greenhouse experiments are being conducted to assess the selected cacao genotypes response to drought and micronutrients. We collaborated with scientists from Brazilian Cacao Research Institute (CEPLAC) and the State University of Santa Cruz (UESC) in Bahia, Brazil under a Specific Cooperative Agreement to evaluate the relationship between soil quality and bean quality in 15 cacao management systems. At the initial stages of cacao establishment, soil is subjected to degradation due to soil loss by erosion and leaching. Providing vegetative cover by use of legume cover crops could reduce soil degradation processes and improve soil fertility. However, persistence of cover crops is controlled by the quality of light. At Beltsville, MD a greenhouse experiment was carried out to evaluate three light intensity effects on growth and physiological traits of 9 legume cover crops. Growth and physiological parameters and chemical composition of macro and micronutrients are being determined. In growth chambers, three cacao genotypes (Amelonado, EET 400, ICS 95) were evaluated for deficient and excess levels of potassium at Beltsville, MD. Plant chemical compositions for macro-micronutrients are being determined at University of Florida Indian River Research and Education Center (IRREC) under a Specific Cooperative Agreement. In Ecuador, selection of national hybrid clones needed for grafting on existing trees was completed and farmers are being selected to implement field research.


4. Accomplishments


Review Publications
Fageria, N.K., Baligar, V.C., Meio, L.C., De Oliveira, J.P. 2012. Differential soil acidity tolerance of dry bean genotypes. Communications in Soil Science and Plant Analysis. 43:1523-1531.

Faria, P.B., He, Z.L., Stoffella, P.J., Melfi, A.J., Baligar, V.C. 2012. Nutrients and nonessential elements in soil after 11 years of wastewater irrigation. Environmental Quality. 41:920-927.

Baligar, V.C., Bunce, J.A., Elson, M.K., Fageria, N.K. 2012. Photosynthetic photon flux density, carbon dioxide concentration and temperature influence photosynthesis in crotalaria species. The Open Plant Science Journal. 6:1-7.

Last Modified: 10/18/2017
Footer Content Back to Top of Page