Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Using Agricultural and Industrial Byproducts to Improve Crop Production Systems and Environment Quality

Location: Soil Dynamics Research

2012 Annual Report

1a. Objectives (from AD-416):
There is an urgent need to develop organic waste management systems in the southeastern United States that preserve and improve the soil resources and provide for environmental quality. The objectives of this project are to: 1) develop improved management practices and/or technologies for using manures and other byproducts (e.g., FGD gypsum) to reduce nutrient loss to the environment; 2) determine and compare the impacts of poultry litter and fertilizer application practices on atmospheric emissions of greenhouse gases; and 3) in cooperation with other ARS locations, develop and evaluate new technologies (e.g., subsurface banding) for the application of poultry litter in agricultural systems.

1b. Approach (from AD-416):
Application of organic waste to soil can improve soil conditions and provide nutrients needed for plant production. Poultry litter use seems to be a viable option for producers in the Southeastern Region, especially since the bourgeoning poultry industry generates large amounts of manure, and interest in utilizing animal manure as a fertilizer source has increased due to rising costs of inorganic fertilizers. However, improper application of animal manures in agriculture can contribute to environmental degradation such as increased hypoxia, eutrophication of surface waters, human health problems, and greenhouse gas emissions. Because of this growing environmental concern, field and laboratory studies will be established to develop improved methods to utilize waste products for soil and crop benefits while minimizing environmental degradation. In addition, manure’s interaction with tillage and cropping systems is not well understood. Thus, the environmental impact of poultry litter addition to soil must be quantified, and improved management techniques for application need to be developed for sustainable use in agriculture. Studies will be initiated to determine long term effects of poultry litter on plant yields and soil physical properties under various tillage and cropping systems. Different poultry litter application practices, such as subsurface banding, will be evaluated to determine their impact on nutrient loss and greenhouse gas emissions. Soil amendments (e.g., gypsum) will be evaluated to determine the impact on plant responses and the potential to reduce phosphorus (P) loss in runoff. Information acquired in the course of this project will be useful for developing agricultural practices using poultry litter as a nutrient source for environmentally sustainable plant production.

3. Progress Report:
Because of the growing environmental concern regarding organic waste disposal, field and laboratory studies were established to develop improved methods to utilize waste products for soil and crop benefits while minimizing environmental degradation. ARS researchers at the NSDL, Auburn, AL have initiated a series of field studies in Alabama to evaluate the impact of fertilizer and poultry litter application methods as affected by tillage systems on crop production and greenhouse trace gas losses to the atmosphere. A four-trench litter applicator implement was designed, constructed, and used for applying poultry litter in field experiments. This unique equipment was patented in 2010. Studies utilizing the litter applicator have demonstrated a substantial reduction in phosphorus in runoff compared to surface application of poultry litter. Studies of soil Nitrogen (N) mineralization as affected by microorganism populations and manure handling methods were conducted. New municipal solid waste processing technology was studied which reduces volume and provides beneficial reuse applications for soil improvement. Experimental evaluations of alternative tree species (sweetgum, hickory and eastern red cedar vs. pine bark) as an alternative substrate for use in horticulture container production were studied. Research was also conducted on the utilization of gypsum as a soil amendment to reduce Phosphorus (P) losses to the environment from poultry litter applications.

4. Accomplishments

Review Publications
Torbert III, H.A., Polley, H.W., Johnson, H.B. 2012. Nitrogen and carbon cycling in a grassland community ecosystem as affected by elevated atmospheric CO2. International Journal of Agronomy. Article ID 817343, 5 pages, 2012. doi:10.1155/2012/817343.

Watts, D.B., Torbert III, H.A. 2011. Long-Term tillage and poultry litter impacts on soybean and corn grain yield. Agronomy Journal. 103:1479-1486.

Boyer, C.R., Torbert III, H.A., Gilliam, C.H., Fain, G.B., Gallagher, T.V., Sibley, J.L. 2012. Nitrogen immobilization in plant growth substrates: clean chip residual, pine bark and peat moss. International Journal of Agronomy. Vol. 2012, Article ID 978528, doi:10.1155/2012/978528.

Nyakatawa, E.Z., Mays, D.A., Way, T.R., Watts, D.B., Torbert III, H.A., Smith, D.R. 2011. Tillage and fertilizer management effects on soil atmospheric exchanges of methane and nitrous oxide in a corn production system. Applied and Environmental Soil Science. Article ID 475370, 12 pages doi:10.1155/2011/475370. Available: 2011/475370.

Murphy, A.M., Gilliam, C.H., Fain, G.B., Torbert III, H.A., Gallagher, T.V., Sibley, J.L., Boyer, C.R. 2011. Low-value trees as alternative substrates in greenhouse production of three annual species. Journal of Environmental Horticulture. 29:152-161.

Marble, S.C., Sibley, J.L., Gilliam, C.H., Torbert III, H.A. 2011. Application of composted poultry litter as a fertilizer for landscape bedding plants. HortScience. 46(10):1367-1372.

Fortuna, A., Honeycutt, C.W., Marsh, T.L., Griffin, T.S., Larkin, R.P., He, Z., Sistani, K.R., Albrecht, S.L., Woodbury, B.L., Torbert Iii, H.A., Powell, J.M., Hubbard, R.K., Eigenberg, R.A., Wright, R.J. 2011. Links among nitrification, nitrifier communities and edaphic properties in contrasting soils receiving dairy slurry. Journal of Environmental Quality. 41:262-272.

Boyer, C.R., Gallagher, T.V., Gilliam, C.H., Fain, G.B., Torbert III, H.A., Sibley, J.L. 2012. Description of clean chip residual forest harvest and its availability for horticultural uses in the southeastern United States. HortTechnology. 23:381-387.

Way, T.R., Lamba, J., Srivastava, P. 2011. A method for installing zero-tension pan and wick lysimeters in soil. Applied Engineering in Agriculture. 27(5):747-755.

Torbert III, H.A., Gebhart, D.L., Busby, R.R. 2011. New municipal solid waste processing technology reduces volume and provides beneficial reuse applications for soil improvement and dust control. In: Kumar, S., editor. Integrated Waste Management. Rijeka, Croatia: InTech. p. 195-218.

Watts, D.B., Torbert III, H.A., Way, T.R. 2011. Evaluation of poultry litter fertilization practices on greenhouse gas emissions. In: Guo, L., Gunasekara, A.S., McConnell, L.L., editors. Understanding Greehouse Gas Emissions from Agricultural Management. ACS Symposium Series, Volume 1072, Chapter 25. American Chemical Society, Washington, DC. p. 473-492.

Mirsky, S.B., Ryan, M.R., Curran, W.S., Teasdale, J.R., Maul, J.E., Spargo, J.T., Moyer, J., Grantham, A.M., Weber, D.C., Way, T.R. 2012. Conservation tillage issues: cover crop-based organic rotational no-till grain production in the mid-atlantic region. Renewable Agriculture and Food Systems. 27(1):31–40. DOI:10.1017/S1742170511000457.

Watts, D.B., Smith, K.E., Torbert III, H.A. 2012. Impact of poultry litter cake, cleanout, and bedding following chemical amendments on soil C and N mineralization. International Journal of Agronomy. Vol. 2012, Article ID 204629, 8 pages, doi:10.1155/2012/204629.

Last Modified: 10/17/2017
Footer Content Back to Top of Page