Skip to main content
ARS Home » Plains Area » Las Cruces, New Mexico » Cotton Ginning Research » Research » Research Project #419799


Location: Cotton Ginning Research

Project Number: 3050-41000-008-00-D
Project Type: In-House Appropriated

Start Date: Jul 8, 2010
End Date: Jun 10, 2015

1. Develop and/or improve technologies for cotton harvesting and processing that favorably impact energy use, raw fiber processing, fiber quality, and fiber end use. 1A. Improve or enhance fiber quality and end use of Upland Cotton and/or Pima cotton. 1B. Enhance harvesting and raw fiber processing. 1C. Reduce overall gin energy use to produce raw fiber. 2. Develop new and/or improved processing, sensing, and control technologies for superior fiber/seed separation, foreign matter identification and extraction, and accurate measurement and process control of on-line fiber properties to produce a better quality fiber with greater economic value and textile utility properties. 2A. Improve seed cotton foreign matter extraction and fiber/seed separation. 2B. Enhance extraction of non-fiber plant material from ginned lint. 2C. Improve foreign matter identification in ginned lint by use of image analysis techniques. 3. Develop new technologies and alternative uses for cotton ginning equipment, lint, cottonseed, and gin by-products that will increase the value of gin-related products. 3A. Improve value of cottonseed and gin-related co-products. 3B. Develop alternative uses of cotton ginning equipment. 4. Develop new information and/or improve technologies for environmental assessment and remediation to assist ginning and related agricultural industries to comply with safety and environmental regulations. 4A. Assist ginning industry in complying with regulatory standards. 4B. Develop and evaluate abatement technologies and/or management practices for controlling agricultural particulate matter emissions.

1: Advance roller ginning knowledge 1) by use of high-speed digital video camera to determine geometry of cottonseed and fiber with respect to the stationary knife, rotary knife, and ginning roller as fiber is pulled off the cottonseed at the ginning point with different designs of the stationary and rotary knife, the speed of the rotary knife and ginning roller, and fiber length of different cultivars; 2) investigate new roller covering materials to find frictional properties that allow fiber to stick to the roller surface and slip on the stationary knife surface and at the same time increase ginning rate; 3) as determined from earlier studies, at least 4 styles of experimental lint cleaner grid bars will be built/tested on full-size commercial lint cleaner for ability to remove seedcoat fragments and other lint impurities as well as their effect on fiber properties, 4) develop improved seed cotton reclaimer using an iterative process, 5) evaluate picker design changes relative to different spindle rotation speeds, spindle diameter and spindle shape, and their effect on picked fiber quality; 6) develop gin energy consumption model and gin design and operating recommendations based on actual gin operational variables using on-site survey and field electrical energy use data from existing commercial gin plants. 2: 1) verify seed cotton moisture prediction model over a range more inclusive of target seed-cotton moisture contents and dryer temperatures; 2) build/validate a system using Ion Mobility Spectrometer instrument to detect contaminating plastics in seed cotton in the lab and then at commercial gin; 3) conduct initial lab tests using microwave generator and seed cotton of varying moisture content and bulk density levels to see how well electromagnetic waves penetrate bulk seed cotton and remove moisture, also determine pattern of moisture removal; 4) lab test experimental gin saw tooth designs based on experimental observations for effect on ginned fiber quality; 5) design/test series of experimental saw lint cleaner grid bars as well as a pneumatic cleaner using no grid bars for their cleaning efficiency and effect on fiber quality; 5) identification of foreign matter in lint using imaging techniques developed by ARS will be evaluated by AMS relative to manual classing results on selected classing samples. 3: 1) Crush Pima cottonseed under controlled conditions, separate into meal and oil. Evaluate meal for its value as a dairy feed; oil will be evaluated by cooperators for its bioenergy properties; 2) an experimental machine based on a saw-type lint cleaner will be designed/tested for ability to process/reclaim waste fiberglass insulation. 4: 1) conduct large multi-year field testing program at cooperating gin sites to develop PM2.5 emission estimates, develop robust dataset for cotton gin emissions for use in air quality low-level dispersion models, and document errors associated with federal reference method PM10 and PM2.5 stack and ambient sampling methodologies when exposed to ag particulate matter; 2) experimentally apply gin emission control technology to other ag processes/applications, improve current gin abatement technology.