Skip to main content
ARS Home » Southeast Area » Athens, Georgia » U.S. National Poultry Research Center » Avian Disease and Oncology Research » Research » Research Project #418579


Location: Avian Disease and Oncology Research

2012 Annual Report

1a. Objectives (from AD-416):
Marek’s disease virus (MDV), unlike most other viruses, is highly cell-associated and consequently, exists as population rather due to the inherent process of mutations. This makes it very difficult to determine the relationship between genetic variation and phenotypic variation. With the advent of molecular clones of MDV-BAC clones and genomic technologies, we can now better address how specific genetic changes influence virus virulence, vaccine efficacy, etc. Specifically, we would like to know during cell passage, are there preferred sites that are required for MDV attenuation. The proposed experiments will guide scientists on how to molecular characterize MDV field strains, what changes occur during cell passage attenuation and vaccine production, and other fundamental knowledge.

1b. Approach (from AD-416):
Our virulent BAC cloned MDV genome that generates a fully virulent virus will be passed in cell culture, which is known to attenuate the virus. At every 10 passages, the viral population will be used to challenge chickens to determine the amount of MD incidence. This will continue until the viral population is completely avirulent. Preceeding populations will have their viral genome purified and sequenced using next generation sequencers (e.g., Illumina GA or ABI SOLiD) to identify polymorphisms in the genome as well as the allele frequency. In addition, RNAs from the same sequenced populations will be sequenced, which when combined with the genomic sequence information, will confirm polymorphisms and reveal changes in viral gene transcription pattern. Following analysis, key genetic changes will be introduced into the virulent viral genome to address whether the polymorphisms do promote attenuation.

3. Progress Report:
This project is directly linked to Specific Cooperative Agreement 3635-32000-016-03S titled “Identification, Characterization, and Validation of Genetic Mutations Incurred During in Vitro Attenuation of Marek’s Disease Virus.” This year, we molecularly characterized the 3 replicates of attenuated MDVs as well as the parental virulent MDV. Depending on the replicate, 41 to 95 SNPs were identified that were present in at least 2% of the viral population. Genes with non-synonymous mutations in all attenuated populations were UL26 and ICP4. Other promising candidates based on their kinetics of emergence over the cell passages include UL5, UL42, UL46, and MDV011. Defined recombinant MDVs have been constructed for many of these mutations and bird challenge experiments are ongoing to determine if these polymorphisms alter viral pathogenicity.

4. Accomplishments