Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Genetic Foundations for Bioenergy Feedstocks


Project Number: 5325-21000-017-00-D
Project Type: In-House Appropriated

Start Date: Aug 15, 2009
End Date: Aug 14, 2014

Develop switchgrass genetic resources in support of bioenergy feedstock improvement. Mine sequence resources for switchgrass and develop markers that distinguish homoeologous groups and that will allow comparative genomics among the Poaceae. Create cytogenetic landmarks for switchgrass and utilize them for karyotyping, map integration, and genetic analysis of existing diversity. Identify induced and natural variation in traits relevant to biomass crop improvement using the model grass Brachypodium. Identify mutants and natural accessions with variation in cell wall composition. Develop functional genomic resources and experimental methods that enable Brachypodium to be used as a model grass. Assess natural diversity using whole genome resequencing. Create a population of insertional mutants, sets of diverse inbred lines and improved annotation of the genome sequence. Apply knowledge gained from Brachypodium toward the improvement of switchgrass using comparative genomics and candidate genes.

Translational and comparative approaches that exploit relatively rapid discovery in model biological systems and the large body of knowledge from other grass taxa can be applied to energy crops. This project will enable these approaches through alignment of switchgrass genetic maps and EST collections with reference grass genomes and will be a fundamental means by which the identification of switchgrass orthologs of genes in other species can be identified. This will allow candidate gene selection for genetic studies directly in phenotypically diverse switchgrass populations for QTL and association analysis. Based on the outcome of forward and reverse genetic experiments in Brachypodium designed to elucidate cell wall composition, the prospects of applying transgenic approaches in switchgrass to manipulate these qualities can be intelligently assessed. These approaches will produce uniquely defined genetic stocks in switchgrass significantly altered with respect to digestibility, that may be subsequently assessed via several different technology platforms for conversion efficiency to useful simple sugars, heat, or combustion gases.

Last Modified: 10/18/2017
Footer Content Back to Top of Page