Page Banner

United States Department of Agriculture

Agricultural Research Service

Related Topics

Research Project: Linking Foods, Behavior and Metabolism to Promote a Healthy Body Weight

Location: Obesity and Metabolism Research

2012 Annual Report

1a. Objectives (from AD-416):
Objective 1: Evaluate mediators of behavior change critical for adopting a healthy diet by investigating interrelationships between psychosocial stress, nutritional behavior and metabolism in humans and animal models. Objective 2: Determine how diet patterns, whole foods, and food components influence physiology and metabolic health by impacting eating- and neuro-behaviors, energy balance and substrate utilization, fitness, body weight and body composition in humans. Objective 3: Determine mechanisms underlying the regulation of body weight and disorders associated with obesity, by examining hormonal, neuronal, and metabolite pathways linking adipose and non-adipose tissues, and characterizing tissue-specific inflammation in humans, cells, and animal models. Objective 4: Determine the impact of dietary lipids on body weight, adiposity, and/or metabolic health indices by assessing their influence on lipoprotein-dependent trafficking of bioactive lipids to adipose and peripheral tissues, their effects on the regulation of metabolic homeostasis, and their interactions with distinct fatty acid desaturase/elongase activity phenotypes. Objective 5: Characterize the roles of cellular zinc in regulation of lipid metabolism, body fat mass, and fat distribution during postnatal development in genetically-modified animal models. Objective 6. Develop and validate phenotyping tools that classify and predict metabolic and body weight responses to dietary and physical activity interventions in individuals and populations.

1b. Approach (from AD-416):
We will use a multidisciplinary approach to test molecular, physiological, and metabolic responses to diets composed of whole foods or enriched with select macro- and micronutrients, determine how physical activity, stress, and genetic factors modify metabolism and responses to foods, identify important behavioral and psychosocial factors related to adopting the U.S. Dietary Guidelines, and determine basic physiological mechanisms underlying links between nutrition, physical activity, and metabolic health. Our work will use classical investigations of metabolism and energetics, along with metabolomic analyses, real-time determinations of brain activity in response to foods, and gene/protein expression determinations to investigate these questions, linking findings from these approaches to whole-organism phenotypes and human behavioral traits. Randomized controlled trials and analyses of samples from longitudinal observational studies will also be conducted. Important studies in animal and cell culture models will complement this work to gain a deeper understanding of underlying mechanisms and/or to obtain proof-of-concept information before designing and conducting human trials.

3. Progress Report:
Progress was made on all six objectives that fall under National Program 107, Human Nutrition. For objective 1, data collected for a brain imaging study was analyzed. In subjects who reported a higher level of chronic psychological stress exposure, brain regions known to be involved with reward and emotion were activated upon visualization of highly palatable foods whereas areas associated with decision-making were de-activated. These new results imply that, in persons with a history of chronic stress, there is an increased risk for emotional eating and dietary habits inconsistent with the Dietary Guidelines. For Objective 2, a study to identify barriers to increasing whole grain consumption continued and methods to distinguish liking (taste acceptability) from wanting (hedonic desire) of specific food products were employed. Data collection continued for a study of the effect of eating breakfast on food choices, satiety, and stress, and progress was made to examine the influence of sex steroids in modulating: i) weight and body composition changes in response to a physical activity intervention and ii) lipid responses to different doses of sugar-sweetened beverages. For objective 3, new methods were validated that provide a visual, biochemical, and molecular snapshot of healthy vs. unhealthy fat tissue in humans, which holds promise to identify those nutritional and genetic factors leading to poor metabolic health seen in many obese persons. In addition, metabolite profiling of blood in unhealthy obese persons was monitored as a diet and fitness regimen improved their metabolism, and unique markers of better health were identified. For objective 4, diets with different omega-6/omega-3 fatty acid ratios and/or fat content were fed to hamsters. With a low fat diet, synthesis of lipids increased in the liver, and circulating metabolite markers indicative of this synthetic process were found. Adipose tissue triglycerides were enriched in eighteen carbon epoxides and ketones. In humans on statin therapy to decrease LDL cholesterol, omega-3 fatty acid supplementation decreased triglyceride levels, while increasing lipoprotein content and thus tissue delivery of omega-3 lipid mediators. VLDL and HDL were the most impacted. Progress on objective 5 included the discovery that Znt7 knockout mice (lacking a key zinc transporter) fed a high fat diet had reduced basal blood insulin levels and were diabetic. Over-expression of ZnT7 protein in muscles increased glucose uptake up to 2.0-fold. Also, a candidate region in a chromosome that is associated with body fat was identified in mice, and genes that are responsible for the adiposity differences are currently being sought. For Objective 6, a retrospective analysis of a data from an omega-3 feeding study in African-Americans found that a habitual diet low in dark green vegetables reduced the incorporation of omega-3 fatty acids into red blood cells, and the subsequent triglyceride lowering and anti-inflammatory effects. This suggests that the health benefits of omega-3 fats in this population are largely dependent upon co-intake of specific vegetables, a finding that can impact public health messaging.

4. Accomplishments

Review Publications
Adams, S.H. 2011. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant states 1,2. Advances in Nutrition. doi:10.3945.

Laugero, K.D., Tryon, M.S. 2011. Stress and food intake: What's the deal with your meal?. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources. doi: 10.1079/PAVSNNR20116034.

Cox, C., Stanhope, K.L., Schwarz, J.M., Graham, J.L., Havel, P.J., Keim, N.L. 2011. Consumption of fructose-sweetened beverages for 10 weeks reduces net fat oxidation and energy expenditure in overweight/obese men and women. American Journal of Clinical Nutrition. Eur J Clin Nutr. 2012 Feb;66(2):201-8.

Banna, J.C., Keim, N.L., Townsend, M.S. 2011. Assessing face validity of a physical activity questionnaire for Spanish-speaking women in California. Journal of Extension. Vol.49:5.

Thomas, A.P., Dunn, T.N., Drayton, J.B., Oort, P.J., Adams, S.H. 2012. A high calcium diet containing nonfat dry milk reduces weight gain and associated adipose tissue inflammation in diet-induced obsed mice when comparated to high calcium alone. Nutrition and Metabolism. 9:3.

Krishnan, S., Newman, J.W., Hembrooke, T.A., Keim, N.L. 2012. Variation in metabolic responses to meal challenges differing in glycemic index in healthy women: Is it meaningful?. Journal of Nutrition and Metabolism. 9(1):26.

Hirahatake, K.M., Meissen, J., Fiehn, O., Adams, S.H. 2011. Comparative effects of fructose and glucose on lipogenic gene expression and intermediary metabolism in HepG2 liver cells. PLoS One. 10.1371.

Huang, S., Rutkowsky, J.M., Snodgrass, R.G., Ono-Moore, K., Schneider, D.A., Newman, J.W., Adams, S.H., Hwang, D.H. 2012. Saturated fatty acids activate TLR-mediated pro-inflammatory signaling pathways. Journal of Lipid Research. Epublished. DOI: 10.1194/jlr.D029546.

Viscarra, J.A., Vazquez-Medina, J.P., Rodriguez, R., Champagne, C.D., Adams, S.H., Crocker, D.E., Ortiz, R.M. 2012. Decreased expression of adipose CD36 and FATP1 are associated with increased plasma nonesterified fatty acids during prolonged fasting in northern elephant seal pups (Mirounga angustirostris) . Experimental Biology. 215(Pt 14):2455-64.

Keenan, A.H., Pedersen, T.L., Fillaus, K., Larson, M.K., Shearer, G.C., Newman, J.W. 2012. Basal omega-3 fatty acid status affects fatty acid and oxylipin responses to high-dose n3-HUFA in healthy volunteers. Journal of Lipid Research. doi: 10.1194.

Grapov, D., Newman, J.W. 2012. imDEV: a graphical user interface to R multivariate analysis tools in Microsoft Excel. Oxford University Press. doi:10.1093.

Last Modified: 10/15/2017
Footer Content Back to Top of Page