Page Banner

United States Department of Agriculture

Agricultural Research Service


Location: Peanut Research

2009 Annual Report

1a. Objectives (from AD-416)
Objective 1. Develop more efficient management practices for conventional tillage systems with respect to agricultural water use for row crops (cotton, corn, and peanut). Objective 2. Develop improved techniques for irrigation scheduling of surface drip irrigation for row crops and vegetables. Objective 3. Develop management techniques for new and emerging crops in peanut-base rotations irrigated with surface drip.

1b. Approach (from AD-416)
Furrow diked, and non-furrow diked treatments will be applied in a strip-split-plot design with irrigation as main plots and furrow diking as sub-plots with a non-irrigated control. In furrow diked treatments, furrow diking will be conducted after planting, near or before seedling emergence. The basins and dams formed by the 2-paddle furrow diker are commonly 1.5 m long, 0.30 m wide, and 0.2 m deep. The ripper shank will be operated at a depth of about 20 cm in every row middle of furrow diked treatments. Furrow dikes will be created in alternate rows, leaving traffic row middles non-diked. Irrigation timing and amount will be determined using IrrigatorPro. Soil and plant parameters will be monitored using electronic sensors. A rainfall simulator will be used to document soil erosion and infiltration from various treatments and soil series. Meteorological factors will be continuously monitored and recorded using electronic weather stations. Agronomic and economic factors will be recorded for each crop throughout the season and reported as a whole to determine the feasibility of each system. Crop yield, quality, and economic factors will be recorded and compared to express the feasibility of these systems. Agronomic management in field studies will be with current best management practices including transgenic herbicide and insecticide systems. Surface drip irrigation (SDI) will be used to document irrigation strategies for peanut, cotton, corn, vegetable, wheat and canola that will promote economic yield. Crop rotations will have four irrigation treatments and three replications in a randomized complete block design. Individual subplots will be 5.5 m wide by 15 m long. Irrigation events will occur daily, bi-weekly and weekly. Soil moisture sensors will be used to determine the depth of water to apply at each irrigation event. Mini-lysimeters will be installed to document drainage below the root zone. Vegetable crops will be double cropped with peanut and cotton and irrigated with SDI to help increase the economic opportunity to the grower. At harvest time yield and grade of vegetables will be collected to determine economic feasibility. Yield will be determined by weighing a mass of vegetables at harvest time. Individual vegetable grades will be determined using state inspection criteria where grade criteria are available. Winter wheat and canola will be planted with various nitrogen treatments to document best economic yield. Crop water use for all crops will be documented using soil sensors, mini-lysimeters, and crop yield. Crop yield and grade will be determined using normal procedures for cotton, corn, and peanut. Winter wheat will be tested for protein and falling number to determine economic value. Canola will be tested for percent oil extraction (on site bio-diesel extraction) to determine its value as a bio-diesel crop. Water use curves will be determined for each crop using lysimeter and soil sensor data. Crop coefficients will be calculated from estimated actual potential evapotranspiration collected from lysimeter and weather data, respectively.

3. Progress Report
Field plots were established in conventional and reduced tillage systems to evaluate furrow diking as a method for water use reduction and water conservation. In previous research, furrow diking in conventional row crop systems has proved to be beneficial in the Southeast. Furrow diking reduces runoff and soil erosion by interrupting surface flow of water during rain storms or irrigation events that produce runoff. Holding more water on cultivated land reduces the need for supplemental irrigation and provides economic stability to non-irrigated row crop production systems. Peanut, cotton, and corn were monitored for irrigation requirements with soil moisture sensors. Irrigation was applied when soil could no longer supply crops with adequate moisture. Furrow diking reduced the amount of irrigation required in corn and cotton crops, which provided economically significant reduction in irrigation required for maximum yield. Reduced tillage systems also limit runoff and erosion by maintaining crop residue from the previous crop on the ground surface. Experiments have been established to determine the long term benefits of reduced tillage and furrow diking as a working system. In soils with high silt content, the ground surface often seals and reduces infiltration rates. This causes high rates of runoff during rain storms and reduces the ability to effectively supply the crop with water because of the time required to adequately supply the crop with water through irrigation. This practice may allow growers to irrigate more economically efficient by facilitating less frequent irrigation through higher irrigation rates per application. In cooperation with NRCS, experiments were established to evaluate furrow diking in pivot and furrow irrigated cotton in Mississippi. These studies are a continuation of work started on the Macon Ridge of Louisiana where irrigated corn yield was significantly improved by furrow diking. Irrigation systems and three irrigation strategies were implemented in peanut, cotton, and corn to help identify best irrigation techniques. Irrigation events were scheduled at three soil water potentials to determine the effects of each irrigation schedule. Irrigation timing and length of time to irrigate were determined using soil moisture sensors to document soil moisture depletion and mini-lysimeters to document drainage. Water potential and water content sensors were installed at soil depths of 20, 40 and 60 cm in the crop row. Daily data collected from soil sensors were used to estimate water application depths for each irrigation strategy. Sensors were connected to a datalogger and were interrogated daily to determine irrigation depths using soil moisture depletion. Lysimeters were installed and sensors installed both in and outside the lysimeter. This project replaces expired project #6604-13210-003-00D through review of the National Program.

4. Accomplishments
1. Drip irrigation laterals were installed next to crop rows (narrow) and in alternate row middles (wide) to determine best yield and economic response to lateral spacing. Peanut yield was greater for irrigated (wide and narrow) compared with non-irrigated peanut. There was no yield difference between the narrow and wide drip lateral spacing. Net economic return was greater for irrigated compared to non irrigated except when precipitation was adequate throughout the growing season. The wide lateral spacing had greater net return compared with the narrow lateral spacing. Shallow subsurface drip irrigation can be used economically on small irregular shaped fields compared with overhead sprinkler systems especially with alternate row middle lateral spacing that can increase peanut yield over non-irrigated peanuts and increase total net revenue to the grower.

Review Publications
Sullivan, D.G., Nuti, R.C., Truman, C.C. 2009. Evaluating a Nonionic Surfactant as a Tool to Improve Water Availability in Irrigated Cotton. Hydrological Processes. 23:2326-2334.

Nuti, R.C., Lamb, M.C., Sorensen, R.B., Truman, C.C. 2009. Agronomic and economic response to furrow diking tillage in irrigated and non-irrigated cotton (Gossypium hirsutum L.). Agricultural Water Management. (2009) 96:1078-1084.

Sorensen, R.B., Butts, C.L. 2008. Yield Response of Four Peanut Cultivars to Calcium with Subsurface Drip Irrigation. Peanut Science. 2008. 35:86-91.

Sorensen, R.B., Lamb, M.C. 2008. Corn and Cotton Yield with Two Surface Drip Lateral Spacings. Crop Management at DOI:10.1094/CM-2008-018-01-RS.

Jordan, D., Nuti, R.C., Beam, J., Lancaster, S., Lanier, J., Johnson, D. 2009. Influence of Application Variables on Peanut (Arachis hypogaea L.) Response to Prohexadione Calcium . Peanut Science. pages 96-103.

Sorensen, R.B., Butts, C.L. 2009. Yield, Grade, and Revenue of Double Cropped Green Bean and Sweet Corn with Cotton. Crop Management. DOI:10.1094/CM-2009-0615-02-RS.

Last Modified: 05/29/2017
Footer Content Back to Top of Page