Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: GENETIC ENHANCEMENT OF POTATOES FOR NUTRITIONAL AND PROCESSING QUALITY AND FOR RESISTANCE TO DISEASES

Location: Genetic Improvement for Fruits & Vegetables Laboratory

2011 Annual Report


1a. Objectives (from AD-416)
Improve levels of disease resistance to foliar and soil-borne pathogens in potatoes. Improve processing and nutritional quality in potatoes through breeding and selection of superior germplasm. Evaluate advanced selections through replicated field trials prior to naming and release to stakeholders.


1b. Approach (from AD-416)
Use recurrent selection to improve diploid populations for disease resistances and processing quality. Use parental line breeding to improve tetraploid populations for disease resistances, processing quality, nutritional quality. Transfer these traits from improved diploids to the tetraploid level via 4x-2x crosses. Develop markers to facilitate introgression of desirable genes or deletion of undesirable genes from related species into commercial germplasm.


3. Progress Report
Breeding for potato tuber quality and disease resistance. Our potato breeding program is actively breeding for improved chipping quality, nutritive value and disease resistance. This effort involves use of adapted tetraploid potato and exotic diploid and wild accessions. Incremental progress is achieved with each breeding cycle wherein crosses between plants with promising attributes are made to combine desirable attributes into single plants. This past year, crosses were made among advanced tetraploid selections to combine improved chipping potential and resistance to late blight and potato virus Y. Promising individuals will be identified in field evaluations. Bulk pollinations among late blight resistant diploid populations were also made to advance the populations for spring testing in the field. Crosses among yellow-fleshed clones with high carotenoid levels were made in the summer to generate segregating populations that will be used to elucidate the allelic composition of yellow-fleshed parents at the beta-carotene hydroxylase locus. A tetraploid population previously characterized for resistance to internal heat necrosis, chipping ability, and specific gravity was distributed to three state cooperators for characterization of common scab resistance. Superior clones will be selected for advancement in the breeding program. SSR molecular markers were developed for the latter population with collaborators to begin research to identify markers linked to disease and quality related genes. Wild species at the hexaploid, tetraploid, and diploid level were screened in tissue culture for root biomass to identify species for use in breeding for nitrogen uptake efficiency. Late blight resistant and orange-fleshed diploid potatoes were screened for 2n pollen in order to begin introgressing this material into adapted tetraploid breeding lines.


4. Accomplishments


Review Publications
Brown, C.R., Haynes, K.G., Moore, M., Pavek, M.J., Hane, D.C., Love, S.L., Novy, R.G., Miller, Jr, J.C. 2010. Stability and Broad-sense Heritability of Mineral Content in Potato: Iron. American Journal of Potato Research. 87: 390–396.

Nitzan, N., Haynes, K.G., Miller, J., Johnson, D., Cummings, T., Batchelor, D., Olsen, C., Brown, C.R. 2011. Genetic Stability in Potato Germplasm for Resistance to Root Galling Caused by the Powdery Scab Pathogen Spongospora subterranea. American Journal of Potato Research. 87:497-501.

Bradeen, J.M., Haynes, K.G. 2011. Introduction to Potato. In: Bradeen, J.J., Haynes, K.G., editors. Genetics, Genomics and Breeding of Potatoes. Enfield, NH: Science Publishers. p. 300.

Mccord, P.H., Sosinski, B.R., Haynes, K.G., Clough, M.E., Yencho, G.C. 2010. Linkage mapping and QTL analysis of agronomic traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Crop Science. 51:771-785.

Brown, C.R., Haynes, K.G., Moore, M., Pavek, M., Hane, D., Love, S., Novy, R.G., Miller, J.C. 2011. Stability and Broad-sense Heritability of Mineral Content in Potato: Zinc. American Journal of Potato Research. 88:238-241.

Mccord, P.H., Sosinski, B.R., Haynes, K.G., Clough, M.E., Yencho, G.C. 2010. QTL mapping of internal heat necrosis in tetraploid potato. Theoretical and Applied Genetics. 122:129-142.

Last Modified: 10/16/2017
Footer Content Back to Top of Page