Skip to main content
ARS Home » Plains Area » Fort Collins, Colorado » Center for Agricultural Resources Research » Soil Management and Sugarbeet Research » Research » Research Project #434410

Research Project: Development of Sugar Beet Germplasm Enhanced for Resistance to Important and Emerging Plant Pathogens

Location: Soil Management and Sugarbeet Research

Project Number: 3012-21220-010-00-D
Project Type: In-House Appropriated

Start Date: Mar 26, 2018
End Date: Mar 25, 2023

Objective:
Objective 1: Identify novel resistance genes to major sugar beet fungal pathogens and sugar beet cyst nemotode within sugar beet genetic resources, especially its crop wild relatives; introgress the discovered novel sources of resistance into sugar beet germplasm for release; incorporate evaluation and characterization data into the Germplasm Resources Informaiton Network (GRIN) database; and screen sugar beet germplasm and commerical lines for major fungal pathogens. Sub-objective 1A: Introgress novel sources of resistance to major pathogens into sugar enhanced beet germplasm for release. Sub-objective 1B: Screen 64 selected accessions of Beta vulgaris subspecies maritima (B.v. subsp. maritima) using single nucleotide polymorphic (SNP) markers linked to resistance genes. Confirm the resistance to these important diseases and begin to introgress novel sources of resistance into sugar beet germplasm for release. Objective 2: Identify and characterize genetic interactions, biochemical pathways, and metobolic processes that control interactions between sugar beet and fungal pathogens, for more efficacious disease resistance selection and improved germplasm for breeding programs, and to provide pratical disease management recommendations for sugar beet producers. Sub-objective 2.A: Screen sugar beet germplasm with the newly discovered pathogen, Fusarium secorum, to identify resistance to the disease caused by this pathogens, Fusarium yellow decline, and to compare resistance in these sugar beet populations to the more traditional disease, Fusarium yellows primarily caused by Fusarium oxysporum f. sp. betae. (Webb) Sub-objective 2.B: Using metabolomic profiling, characterize the biological pathways that are induced during susceptible and resistant interactions with F. oxysporum f. sp. betae and F. secorum.

Approach:
The sugar beet research within the Soil Management and Sugar Beet Research Unit contributes to the broader, national sugar beet research effort by USDA-ARS. Our research focuses on sugar beet disease because they remain an important source of pre- and post-harvest crop and sugar losses throughout the United States and internationally. Although advances have been made effective tools for managing important diseases are lacking. The pathogenic fungi Rhizoctonia and Fusarium and the sugar beet cyst nematode have particular economic importance because they are among the major limiting factors for sugar beet production nationwide. As part of a national sugar beet improvement program, we will apply a focused approach to enhance crop improvement methods and produce resistant germplasm through increased understanding of sugar beet genetics, some of its major pathogens, and its wild relatives. This project will exploit increased understanding of sugar beet/pathogen interactions and improve the understanding of pathogen diversity. We will use this knowledge to more quickly and cost effectively select disease resistant germplasm and develop superior disease management strategies. The breeding and pathology components of the project are focused on enhanced sugar beet germplasm through increased understanding of important sugar beet diseases and their epidemiology. This is especially crucial in diseases for which there is no chemical protection or where crop protectants are being phased out.