Page Banner

United States Department of Agriculture

Agricultural Research Service

Research Project: Investigating Microbial, Digestive, and Animal Factors to Increase Dairy Cow Performance and Nutrient Use Efficiency

Location: Cell Wall Biology and Utilization Research

Project Number: 5090-31000-026-00-D
Project Type: In-House Appropriated

Start Date: Sep 1, 2017
End Date: Aug 31, 2022

Objective:
Objective 1: Evaluate the gastrointestinal microbial and digestive factors that influence nutrient use efficiency and milk production capacity and quality in dairy cattle. • Sub-objective 1.A. Determine the relationship between the gastrointestinal microbial community composition and production capacity and efficiency; develop relevant strategies to direct rumen microbial community composition for increased milk production capacity and efficiency and improved milk quality. • Sub-objective 1.B. Evaluate dietary composition, microbial, and animal factors, and microbe-animal interactions that affect the digestion and metabolism of forage/feed by rumen microbes and the passage of digesta from the rumen to predict nutrient provisions for increased performance and nutrient use efficiency. Objective 2: Identify animal factors that affect the conversion of dietary and potentially digestible nutrients toward milk production for increased nutrient use efficiency. • Sub-objective 2.A. Evaluate the dairy cow genetic and genomic factors affecting nutrient use efficiency and their interactions with the gastrointestinal microbial community and dietary factors for increased milk production capacity and efficiency and improved milk quality. • Sub-objective 2.B. Optimize the profile of circulating nutrients and identify and improve the genetic and management related-animal factors that affect the partitioning of nutrients toward milk and away from manure and greenhouse gas emissions.

Approach:
Sub-objective 1.A will develop biological resources and computational tools to enhance characterization of dairy breed-specific bovine and other genomes. Samples will initially be taken from a healthy cow in early lactation that has been exclusively fed mixed forage (alfalfa- and corn-silage based); samples will come from three separate portions of the rumen (solid, liquid, and epimural lining). Our plan is to sequence and assemble the most prevalent species/strains that occupy the solid (feed particle-associated) and liquid (planktonic) phases of rumen digesta, and the interior rumen lining (epimural community). Additionally, establishment and the potential to direct the rumen microbial community toward a feed efficient phenotype will be studied in dairy calves. Multiple doses of rumen fluid from cows having a particular milk production efficiency status will be provided to newborn and pre-weaned calves. We will evaluate if this results in the establishment of a microbial community that is more similar to that of the donor inoculum than in calves dosed with sterile rumen fluid. These heifers will be followed through their first lactation to evaluate if the dosed animals will exhibit milk production efficiency more like that of the donor cow than that of the controls. Sub-objective 1.B will consist of several in vitro studies to evaluate methods of analyzing for microbial protein, starch degradability, and microbial protein synthesis. In addition to the in vitro studies, a series of animal experiments will be conducted to evaluate within-day changes in rumen liquid volume and passage that occur in response to multiple dietary factors that alter water intake and outflow of liquid from the rumen. Water intake will also be monitored to evaluate the effect of treatment and the potential correlation with rumen liquid passage. Sub-objective 2.A will involve several studies to identify molecular markers and adaptive transcriptome changes in dairy cows in response to diet, health status, and the interaction between rumen microbiome diversification and host transcriptome and genetic profile. Host transcriptome changes will be evaluated from a diverse range of tissue and sample types. Sub-objective 2.B will use several lactation and nutrient balance studies to evaluate nutrient partitioning in response to dietary provision of different levels of protein. We will collect nitrogen balance, gaseous emission, and production measurements to determine the effects of nutritional treatment on productivity and environmental output.

Last Modified: 09/24/2017
Footer Content Back to Top of Page