Skip to main content
ARS Home » Northeast Area » Frederick, Maryland » Foreign Disease-Weed Science Research » Research » Research Project #432679

Research Project: Identification, Biology, Epidemiology, and Control of Foreign and Emerging Fungal Plant Pathogens

Location: Foreign Disease-Weed Science Research

Project Number: 8044-22000-046-00-D
Project Type: In-House Appropriated

Start Date: Apr 11, 2017
End Date: Apr 10, 2022

Objective:
Objective 1: Generate and utilize genomic, transcriptomic, and proteomic sequence information of foreign fungal plant pathogens to develop diagnostic assays. [NP303, C1, PS1] Sub-objective 1.A - Develop accurate and rapid means for identification and detection of foreign fungal plant pathogens. Objective 2: Determine the effects of temperature, moisture and their interactions on the germination, growth, and survival of foreign fungal plant pathogens and development of disease. [NP303, C2, PS2A] Sub-objective 2.A - Determine the effects of temperature and moisture on infection and development of disease. Sub-objective 2.B - Determine the effects of temperature and moisture on the survival of foreign fungal plant pathogens. Objective 3: Utilize genomic and transcriptomic sequence information to identify and characterize genes and proteins required for infection and pathogenicity of foreign fungal plant pathogens. [NP303, C2, PS2B] Sub-objective 3.A - Identify secreted proteins from foreign fungal plant pathogens. Objective 4: Screen germplasm and identify resistance genes to foreign fungal plant pathogens. [NP303, C3, PS3A] Sub-objective 4.A. Screen germplasm for resistance to foreign fungal plant pathogens. Sub-objective 4.B. Identify genes and pathways involved in resistance to foreign fungal plant pathogens.

Approach:
Genomic sequence information will be generated from foreign fungal plant pathogens and bioinformatic analyses will be conducted to identify genes and proteins. The genomic sequence data will be mined to identify unique target sequences to develop rapid DNA-based diagnostic assays. Unique pathogen proteins or isoforms will be identified and used to generate antibodies to develop immunodiagnostic assays. Secreted proteins from fungal plant pathogens that contribute to pathogenicity will be identified using assays to detect secreted proteins and/or interactions between host- and pathogen-derived proteins. Temperature-controlled growth chambers will be used to determine effects of low temperatures and durations on pathogen survival. Additionally, the effects of moisture levels, chemical sterilants, endophytes, and antagonistic biocontrol organisms on plant pathogen survival will be assessed. Germplasm will be inoculated with foreign fungal plant pathogens and screened for resistance.