Skip to main content
ARS Home » Southeast Area » Miami, Florida » Subtropical Horticulture Research » Research » Research Project #429674

Research Project: Methyl Bromide Replacement: Mitigation of the Invasive Pest Threat from the American Tropics and Subtropics

Location: Subtropical Horticulture Research

Project Number: 6038-22000-006-00-D
Project Type: In-House Appropriated

Start Date: Sep 10, 2015
End Date: Sep 9, 2020

Objective:
1. Identify semiochemicals that mediate the behavior and physiology of exotic insects such as tephritid (Ceratitis and Anastrepha) and drosophilid (Zaprionus indianus) fruit flies, the redbay ambrosia beetle, the cocoa pod borer, and other new invasive pests from the Caribbean and Central and South America. 1.A. Determine and document behavioral and olfactory responses to semiochemicals that have potential use in monitoring and control systems. 1.B. Identify and quantify insect semiochemicals; develop improved systems to collect and identify semiochemicals. 2. Develop semiochemical- and/or chemical-based technologies that lead to products for detection, behavioral disruption, or surveillance of fruit flies. 2.A. Develop synthetic and natural product lures based on host location and/or feeding cues that are formulated for effective use in integrated pest management. 2.B. Develop optimized trapping and control systems based on chemical lures in combination with traps and bait stations. 2.C. Develop novel, high-tech solutions for OFF detection and eradication, such as lasers, sonic methods, or nano-technologies. For example, traps could be developed that can automatically identify trapped insects based on wing beat frequency, size, weight, or protein content. 3. : Develop practical systems for integrated pest management using semiochemical and other detection-based technologies to reduce the threat of importation and establishment of exotic pests from foreign tropical and subtropical environments by suppressing and/or controlling the population at the source. An insect toxicologist is needed to identify the modes of actions for different pesticide classes on the OFF, and the physiological mechanisms for pesticide resistance development. This research will lead to improved chemical control strategies and reduce pesticide resistance development. 3.A. Develop IPM tools for tephritid fruit flies using semiochemical-based technologies for use by regulatory agencies and growers; develop new approaches including improved protocols and spatial analysis techniques to assess monitoring approaches and control systems such as attract-and-kill technologies. 3.B. Stereochemistry of selected compounds and structural characteristics may play a highly significant role in efficacy of kairomones needed for pest detection and control. The correlations of active components such as configuration, functional groups and identification of cis-, trans- and chiral isomers can influence on the bioactivity. 3.C. Develop pesticide resistance management for fruit fly control by 1) identifying the modes of actions for different pesticide classes on OFF and 2) determining the physiological mechanisms for pesticide resistance development in Oriental fruit fly and other fruit flies.

Approach:
Research will consist of field and laboratory experiments to determine the behavior, physiology and chemical ecology of insect pests that can be used in the development of monitoring and control techniques. Strategies will include developing new detection and delimitation tools that will include baits, discrete attract-and-kill devices for insect pests, next generation technologies such as detectors and robots, and network theory and optimization that will improve detection of the Oriental fruit fly and relatives; identifying pesticide modes of action on and physiological response of Oriental fruit fly and relatives for improved pesticide resistance management; identifying new semiochemicals through investigations of plant essential oils and stereochemistry of plant compounds, and discovering components in the insect's biology that can be exploited for control measures for exotic insect pests that affect plant production.