Skip to main content
ARS Home » Plains Area » Kerrville, Texas » Knipling-Bushland U.S. Livestock Insects Research Laboratory » LAPRU » Research » Research Project #427176

Research Project: Genomics of Livestock Pests

Location: Livestock Arthropod Pests Research

Project Number: 3094-32000-036-000-D
Project Type: In-House Appropriated

Start Date: Jun 1, 2014
End Date: May 31, 2019

Objective:
Objective 1: Sequencing and annotation of the genome of the horn fly and cattle fever tick. Subobjective 1A: Assembly and annotation of the cattle tick genome sequence. Subobjective 1B: Sequencing, assembly, and annotation of the genome sequence of the horn fly. Objective 2: Investigate molecular-based control and surveillance technologies. Subobjective 2A: Identify candidate antigens for anti-biting fly and anti-tick vaccines and formulate as vaccines for animal trials. Subobjective 2B: Identification of gene-based mechanisms of pesticide resistance and develop gene-based surveillance assays to monitor gene flow. Objective 3: Increase sequence information and genetic annotation of livestock pests, focusing on biological aspects likely to be affected by climate change.

Approach:
Utilize advanced bioinformatic assembly and annotation protocols to attain a draft annotated R. microplus genome sequence of sufficient quality for publication in international peer-reviewed journals. The assembled and annotated sequence will be made available for the scientific community at CattleTickBase (http://ccg.murdoch.edu.au/cattletickbase) and GenBank. Sequence the horn fly genomic DNA with similar protocols and caveats utilized to sequence the tick genome. The horn fly genomic DNA to be sequenced will be obtained from a laboratory colony maintained since 1961 at our laboratory, reared in cages and feeding upon cotton pads saturated with citrated bovine blood. The assembled sequence will be available for the scientific community by submission of the data to GenBank. Identify candidate vaccine antigens through reverse vaccinology from datasets obtained from prior project or as part of objective 1 of this project. Utilize real-time PCR to study metabolic-based pesticide resistance and quantify gene expression of specific horn fly cytochrome P450s in populations of horn flies with known metabolic resistance-based mechanisms. Use a transcriptomic approach to sequence nuclear and mitochondrial genes from tick collections in Indian and Philippine collections to use for phylogenetic comparisons to the Texas outbreak R. microplus Deutsch population that was used in prior R. microplus transcriptome studies.