Skip to main content
ARS Home » Pacific West Area » Albany, California » Plant Gene Expression Center » Research » Research Project #425045

Research Project: Characterizing Circadian Regulatory Networks in Grain Crops to Establish their Role in Development and Abiotic Responses

Location: Plant Gene Expression Center

2014 Annual Report

4. Accomplishments
1. Drought modifies daily regulation of drought-responsive and circadian clock genes in soybean. The drought response pathways in soybean are incompletely understood. To identify genes involved in soybean drought responses and to test for feedback regulation between the circadian clock and drought stress pathways, ARS researchers from the Plant Gene Expression Center in Albany, California, and Brazilian researchers from the Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) or the Brazilian Enterprise for Agricultural Research, compared the genome wide gene expression behavior of soybean plants exposed or not to water limitation. This study found regulatory crosstalk between the soybean circadian clock and drought stress-signaling pathway. It also discovered novel drought-responsive transcription factors. This study provides a more complete understanding of the signaling pathways for drought tolerance and new gene targets to improve drought tolerance in soybean and related species.

Review Publications
Gomes, J.M., Rodrigues, F.A., Fuganti-Pagliarini, R., Nakayama, T.J., Bendix, C., Celeya, R., Molinari, H.B., Nepomuceno, A.L., Harmon, F.G. 2014. Diurnal oscillations of soybean circadian clock and drought responsive genes. PLoS One. 9(1):e86402. doi:10.1371/journal.pone.0086402.

Thines, B.C., Youngwon, Y., Duarte, M.I., Harmon, F.G. 2014. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. Journal of Experimental Botany. 65(4):1141-51. DOI: 10.1093/jxb/ert487.