Page Banner

United States Department of Agriculture

Agricultural Research Service

Liang Sun

Visiting Scientist


photo of Liang Sun Liang Sun
Research Physical Scientist
USDA-ARS Hydrology and Remote Sensing Laboratory
Bldg. 007, Rm. 104, BARC-West
Beltsville, MD 20705-2350 USA
Voice: (301) 504-8554
Fax: (301) 504-8931
Liang.Sun@ars.usda.gov
Research Interests:
  • Remote sensing evapotranspiration models.
  • Drought monitoring using continuous land surface temperature and vegetation index.
  • Crop conditions and crop water use based on multi-satellite data fusion

Education:

  • 2005 B.S. (Land Resources Management) China University of Geosciences, Beijing, China.
  • 2010 Ph.D. (Remote Sensing) Beijing Normal University, Beijing, China.

Professional Experience:

  • 2010-2012: Post-doctoral researcher, Global change and earth system science school, Beijing Normal University, Beijing, China.
  • 2012-2015: Research assistant, Remote sensing center, Chinese Academy of Agricultural Sciences, Beijing, China.
  • 2015-present: Post-doctoral researcher, USDA-ARS Hydrology and Remote Sensing Laboratory, Beltsville, MD.

Awards:

  • 2014: The National Natural Science Foundation of China "Monitoring soil moisture based on improved Land surface temperature and NDVI feature space" (3 year RMB 250K).
  • 2013: The foundation of the Key Laboratory of Agri-informatics, Ministry of Agriculture "Study on crop water cycle balance" (2 year RMB 20K).
  • 2013: "The outstanding post-doc" in Chinese Academy of Agricultural Science.
  • 2010: "The outstanding PhD student" in Beijing Normal University.
  • 2008: "The second-class Science and Technology Advancement Award", Henan Bureau of Meteorology.

Selected Publications: (please contact the author to determine reprint availability)

(view author's publications/interpretive summaries/technical abstracts since 1999)

Yunjun Yao, Shunlin Liang, Jian Yu, Shaohua Zhao, Yi Lin, Kun Jia, Xiaotong Zhang, Jie Cheng, Xianhong Xie, Liang Sun, Xuanyu Wang, Lilin Zhang, Differences in estimating terrestrial water flux from three satellite-based Priestley-Taylor algorithms. International Journal of Applied Earth Observation and Geoinformation. 2017, 56, 1-2

Liang Sun, Feng Gao, Martha Anderson, Wayne Dulaney, L McKee, A White, B Kustas, J Alfteri, J Prueger Daily mapping of Landsat-like LAI and correlation to grape yield. Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE International, 7157-7160

He Li, Zhongxin Chen, Zhiwei Jiang, Liang Sun, Ke Liu, Bin Liu, Temporal-spatial variation of evapotranspiration in the Yellow River Delta based on an integrated remote sensing model. Journal of Applied Remote Sensing, 2015, 9 (1):  096047-096047

Chen, Y., Xia, J., Liang, S., Feng, J., Fisher, J.B., Li, X., Li, X., Liu, S., Ma, Z., Miyata, A., Mu, Q., Sun, L., Tang, J., Wang, K., Wen, J., Xue, Y., Yu, G., Zha, T., Zhang, L., Zhang, Q., Zhao, T., Zhao, L., & Yuan, W. (2014). Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sensing of Environment, 140, 279-293, doi:10.1016/j.rse.2013.08.045

Yunjun Yao, Shunlin Liang, Xianglan Li, Yang Hong, Joshua B. Fisher, Nannan Zhang, Jiquan Chen, Jie Cheng, Shaohua Zhao, Xiaotong Zhang, Bo Jiang, Liang Sun, Kun Jia, Kaicun Wang, Yang Chen, Qiaozhen Mu and Fei Feng, 2014: Bayesian multi-model estimation of global terrestrial latent heat flux from eddy covariance, meteorological and satellite observations. Journal of Geophysical Research-Atmosphere. doi: 10.1002/2013JD020864.

Zhiwei Jiang , Zhongxin Chen , Jin Chen , Jia Liu, Jianqiang Ren , Zongnan LiLiang Sun and He Li. 2014. Application of Crop Model Data Assimilation With a Particle Filter for Estimating Regional Winter Wheat Yields. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2014,pp(99):1-10 doi:10.1109/JSTARS.2014.2316012

Zhiwei Jiang , Zhongxin Chen , Jin Chen , Jianqiang Ren , Zongnan Li and Liang Sun. The Estimation of Regional Crop Yield Using Ensemble-Based Four-Dimensional Variational Data Assimilation. Remote Sensing, 2014, 6(4), 2664-2681; doi:10.3390/rs6042664

Sun Liang, Liang Shunlin, Yuan Wenping et al. Improving a Penman-Monteith evapotranspiration model by incorporating soil moisture control on soil evaporation in semi-arid area. International Journal of Digital Earth..  DOI:10.1080/17538947.2013.783635.

Sun Liang, Chen Zhongxin. Comparison of Evapotranspiration Models over different land covers.2013. 35th International Symposium on Remote Sensing of Environment

Sun Liang, Sun Rui, Li Xiaowen, Liang Shunlin, Zhang Renhua. Monitoring surface soil moisture status based on remotely sensed surface temperature and vegetation index information, Agriculture and Forest Meteorology, 2012, 166-167:175-187, doi:10.1016/j.agrformet.2012.07.015

Sun Liang, Sun Rui, Yang Shiqi, et al. 2009, Estimating evapotranspiration using MODIS data, Transactions of the CSAE, 2009, 25(Supp.2): 23-28.

Sun Liang, Chen Zhongxin. Estimation of regional evapotranspiration based on Penman-Monteith theory and soil moisture estimates. Transactions of the CSAE, 2013,29 (10):101-108.

Sun Liang, Sun Rui , LI Xiaowen , et al. 2011, Estimating Evapotranspiration Using Improved Fractional Vegetation Cover and Land Surface Temperature Space, Journal of Resources and Ecology, 2(3) 289-299

Sun Liang, Sun Rui, Jia Chengang, et al. 2008, A comparison of split window algorithm to retrieve land surface temperature from MODIS data, Journal of Beijing Normal University (Natural Science), 44 (4): 434-438. (in Chinese with English abstract)

Wang W., Sun Liang, Liu Guo, et al. 2008, The Comparison of Regional Evapotranspiration Estimation with NOAA AVHRR and MODIS data. Proceedings of SPIE. 

Zhang X.F., Sun Liang, Sun Rui, et al. 2008, Study on the Late Frost Monitoring Technology for Winter Wheat by EOS/MODIS data. Proceedings of SPIE.

Zhang T., Sun R., Hu B., Dang Y., Sun L., 2010,Analyzing Soil Carbon Characteristics of Typical Urbanization Zones in Northwestern Beijing, Journal of Beijing Normal University (Natural Science), 46 (1): 97-102




logo for the Hydrology and Remote Sensing Laboratory


Last Modified: 12/5/2016
Footer Content Back to Top of Page