Skip to main content
ARS Home » Northeast Area » Beltsville, Maryland (BARC) » Beltsville Agricultural Research Center » Hydrology and Remote Sensing Laboratory » People » Simon Kraatz

Simon Kraatz

Research Physical Scientist
 /ARSUserFiles/56849/SimonKraatz.jpg Simon Kraatz, Ph.D.
Research Physical Scientist

USDA-ARS Hydrology and Remote Sensing Laboratory
Bldg. 007, Rm. 104, BARC-West
Beltsville, MD 20705-2350 USA
Voice: (301) 504-7490
Fax: (301) 504-8931
Simon.Kraatz@usda.gov

 

Research Interests:

  • In-situ validation of soil and vegetation parameters.
  • Scaling of land surface parameters to satellite scale.
  • Validation of satellite products, such as cloud masking, freeze-thaw and cropland classification.

Education:

  • 2001 B.S. (Physics) Department of Physics, SUNY Binghamton, Binghamton, NY.
  • 2003 M.S. (Physics) Department of Physics, Rensselaer Polytechnic Institute, Troy, NY.
  • 2012 M.E. (Civil Engineering) Grove School of Engineering, City College, New York, NY.
  • 2017 Ph.D. (Civil Engineering) Grove School of Engineering, City College, New York, NY.

Professional Experience:

  • 2017 - 2019: Post-Doctoral Researcher, Department of Civil Engineering, University of New Hampshire, Durham, NH.
  • 2019 - 2021: Post-Doctoral Researcher and Research Assistant Professor, Department of Electrical Engineering/Microwave Remote Sensing Lab, University of Massachusetts, Amherst, MA.
  • 2021 - present: Research Physical Scientist, USDA-ARS-Hydrology and Remote Sensing Laboratory, Beltsville, MD.

Professional Service:

  • American Geophysical Union Member
  • Soil Science Society of America Member
  • American Society of Agronomy Member

Selected Publications: (please contact the author to determine reprint availability)

Qu, K., Lan, G.Y., Kraatz, S., Sun, W.Y., Deng, B. and Jiang, C.B., 2021. Numerical Study on Wave Attenuation of Tsunami-Like Wave by Emergent Rigid Vegetation. Journal of Earthquake and Tsunami15(06), p.2150028.

Rose, S., Kraatz, S., Kellndorfer, J., Cosh, M.H., Torbick, N., Huang, X. and Siqueira, P., 2021. Evaluating NISAR's cropland mapping algorithm over the conterminous United States using Sentinel-1 data. Remote Sensing of Environment260, p.112472.

Kraatz, S., Torbick, N., Jiao, X., Huang, X., Robertson, L.D., Davidson, A., McNairn, H., Cosh, M.H. and Siqueira, P., 2021. Comparison between Dense L-Band and C-Band Synthetic Aperture Radar (SAR) Time Series for Crop Area Mapping over a NISAR Calibration-Validation Site. Agronomy11(2), p.273.

Holtzman, N.M., Anderegg, L.D., Kraatz, S., Mavrovic, A., Sonnentag, O., Pappas, C., Cosh, M.H., Langlois, A., Lakhankar, T., Tesser, D. and Steiner, N., 2021. L-band vegetation optical depth as an indicator of plant water potential in a temperate deciduous forest stand. Biogeosciences18(2), pp.739-753.

Huang, X., Reba, M., Coffin, A., Runkle, B.R., Huang, Y., Chapman, B., Ziniti, B., Skakun, S., Kraatz, S., Siqueira, P. and Torbick, N., 2021. Cropland mapping with L-band UAVSAR and development of NISAR products. Remote Sensing of Environment253, p.112180.

Kraatz, S., Rose, S., Cosh, M.H., Torbick, N., Huang, X. and Siqueira, P., 2021. Performance evaluation of UAVSAR and simulated NISAR data for crop/noncrop classification over Stoneville, MS. Earth and Space Science8(1), p.e2020EA001363.

Colliander, A., Cosh, M.H., Kelly, V.R., Kraatz, S., Bourgeau‐Chavez, L., Siqueira, P., Roy, A., Konings, A.G., Holtzman, N., Misra, S. and Entekhabi, D., 2020. SMAP detects soil moisture under temperate forest canopies. Geophysical Research Letters47(19), p.e2020GL089697.

Kraatz, S., Miller, H.J., Poirier, B.J., Moradi, M. and Jacobs, J.M., 2020. Potential Use of NASA’s Soil Moisture Active Passive Freeze–Thaw Tool to Assist in Minnesota Seasonal Load Restriction Timing. Transportation Research Record2674(5), pp.239-249.

Kraatz, S., Jacobs, J.M., Schröder, R., Cho, E., Miller, H.J. and Vuyovich, C.M., 2020. Improving SMAP freeze-thaw retrievals for pavements using effective soil temperature from GEOS-5: Evaluation against in situ road temperature data over the US. Remote Sensing of Environment237, p.111545.

Qu, K., Sun, W.Y., Deng, B., Kraatz, S., Jiang, C.B., Chen, J. and Wu, Z.Y., 2019. Numerical investigation of breaking solitary wave runup on permeable sloped beach using a nonhydrostatic model. Ocean Engineering194, p.106625.

Kraatz, S., Miller, H.J., Jacobs, J.M., Dave, E.V. and Sias, J., 2019. Accuracy Assessment of Satellite-Based Freeze-Thaw Retrievals on Low-Volume Roads in the United States. Transportation Research Record2673(12), pp.756-766.

Cho, E., Jacobs, J.M., Jia, X. and Kraatz, S., 2019. Identifying subsurface drainage using satellite Big Data and machine learning via Google Earth Engine. Water Resources Research55(10), pp.8028-8045.

Kraatz, S., Miller, H.J. and Jacobs, J.M., 2019. Remotely Sensed Freeze-Thaw from the Soil Moisture Active Passive Instrument to Inform the Timing of Seasonal Load Restrictions in Alaska. Transportation Research Record2673(3), pp.410-418.

Kraatz, S., Jacobs, J.M. and Miller, H.J., 2019. Spatial and temporal freeze-thaw variations in Alaskan roads. Cold Regions Science and Technology157, pp.149-162.

Kraatz, S., Jacobs, J.M., Schröder, R., Cho, E., Cosh, M., Seyfried, M., Prueger, J. and Livingston, S., 2018. Evaluation of SMAP freeze/thaw retrieval accuracy at core validation sites in the contiguous United States. Remote Sensing10(9), p.1483.

Kraatz, S., Khanbilvardi, R. and Romanov, P., 2017. A comparison of MODIS/VIIRS cloud masks over ice-bearing river: on achieving consistent cloud masking and improved river ice mapping. Remote Sensing9(3), p.229.

Qu, K., Ren, X.Y. and Kraatz, S., 2017. Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave. Applied Ocean Research63, pp.36-48.

Kraatz, S., Khanbilvardi, R. and Romanov, P., 2016. River ice monitoring with MODIS: Application over lower susquehanna river. Cold Regions Science and Technology131, pp.116-128.

Tang, H.S., Qu, K., Chen, G.Q., Kraatz, S., Aboobaker, N. and Jiang, C.B., 2014. Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA. Renewable and Sustainable Energy Reviews39, pp.412-425.

Tang, H.S., Kraatz, S., Qu, K., Chen, G.Q., Aboobaker, N. and Jiang, C.B., 2014. High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA. Renewable and Sustainable Energy Reviews32, pp.960-982.

Tang, H.S., Chien, S.I.J., Temimi, M., Blain, C.A., Ke, Q., Zhao, L. and Kraatz, S., 2013. Vulnerability of population and transportation infrastructure at the east bank of Delaware Bay due to coastal flooding in sea-level rise conditions. Natural hazards69(1), pp.141-163.

Tang, H.S., Kraatz, S., Wu, X.G., Cheng, W.L., Qu, K. and Polly, J., 2013. Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: Method, implementation, and experiment. Ocean engineering62, pp.56-67.

Cho, G.C., Chen, H.T., Kraatz, S., Karpowicz, N. and Kersting, R., 2005. Apertureless terahertz near-field microscopy. Semiconductor science and technology20(7), p.S286.

Chen, H.T., Kraatz, S., Cho, G.C. and Kersting, R., 2004. Identification of a resonant imaging process in apertureless near-field microscopy. Physical review letters93(26), p.267401.

 

logo for the Hydrology and Remote Sensing Laboratory